如图所示,在倾角为θ=30°的光滑斜面的底端有一个固定挡板D,小物体C靠在挡板D上,小物体B与C用轻质弹簧拴接.当弹簧处于自然长度时,B在O点;当B静止时,B在M点,OM=l.在P点还

首页 > 考试 > 物理 > 高中物理 > 共点力的平衡/2022-10-22 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,在倾角为θ=30°的光滑斜面的底端有一个固定挡板D,小物体C靠在挡板D上,小物体B与C用轻质弹簧拴接.当弹簧处于自然长度时,B在O点;当B静止时,B在M点,OM=l.在P点还有一小物体A,使A从静止开始下滑,A、B相碰后一起压缩弹簧.A第一次脱离B后最高能上升到N点,ON=1.5l.B运动还会拉伸弹簧,使C物体刚好能脱离挡板D.A、B、C的质量都是m,重力加速度为g.求
(1)弹簧的劲度系数;
(2)弹簧第一次恢复到原长时B速度的大小;
(3)M、P之间的距离.
魔方格

◎ 答案

(1)B静止时,受力如图所示,

魔方格

根据物体平衡条件得kl=mgsinθ
弹簧的劲度系数   k=
mg
2l

(2)当弹簧第一次恢复原长时A、B恰好分离.
设此时A、B速度的大小为v3,对A物体,从A、B分离到A速度变为0的过程,
根据机械能守恒定律得
1
2
m
v23
=mg△h

此过程中A物体上升的高度△h=1.5lsinθ
得                  v3=

3
2
gl

(3)设A与B相碰前速度的大小为v1,A与B相碰后速度的大小为v2,M、P之间距离为x.对A物体,从开始下滑到A、B相碰的过程,根据机械能守恒定律得  
 mgxsinθ=
1
2
m
v21

A与B发生碰撞,根据动量守恒定律得  
 mv1=(m+m)v2   
设B静止时弹簧的弹性势能为EP,从A、B开始压缩弹簧到弹簧第一次恢复原长的过程,根据机械能守恒定律得
1
2
(m+m)
v22
+EP=
1
2
(m+m)
v23
+(m+m)glsinθ

B物体的速度变为0时,C物体恰好离开挡板D,此时弹簧的伸长量也为l,弹簧的弹性势能也为EP
对B物体和弹簧,从A、B分离到B速度变为0的过程,由机械能守恒定律得
1
2
m
v23
=mglsinθ+Ep

解得      
x=9l 
答:(1)弹簧的劲度系数为k=
mg
2l

    (2)弹簧第一次恢复到原长时B速度v3=

3
2
gl

   (3)M、P之间的距离x=9l

◎ 解析

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐