理论证明,取离星球中心无穷远处为引力势能的零势点时,以物体在距离星球中心为r处的引力势能可表示为:Ep=-GMmr.G为万有引力常数,M、m表示星球与物体的质量,而万有引力做的

首页 > 考试 > 物理 > 高中物理 > 牛顿第二定律/2022-10-29 / 加入收藏 / 阅读 [打印]

◎ 题目

理论证明,取离星球中心无穷远处为引力势能的零势点时,以物体在距离星球中心为r处的引力势能可表示为:Ep=-G
Mm
r
.G为万有引力常数,M、m表示星球与物体的质量,而万有引力做的功则为引力势能的减少.已知月球质量为M、半径为R,探月飞船的总质量为m.月球表面的重力加速度为g,万有引力常数G.
(1)求飞船在距月球表面H(H>
R
3
)高的环月轨道运行时的速度v;
(2)设将飞船从月球表面发送到上述环月轨道的能量至少为E.有同学提出了一种计算此能量E的方法:根据E=
1
2
mv2+mgH
,将(1)中的v代入即可.请判断此方法是否正确,并说明理由.如不正确,请给出正确的解法与结果(不计飞船质量的变化及其他天体的引力和月球的自转).

◎ 答案

(1)探月飞船作圆周运动所需的向心力由月球对探月飞船的万有引力提供
所以:G
Mm
(R+H)2
=m
v2
R+H

解得v=

GM
R+H

(2)因探月飞船从月球表面发送到H高处的过程中月球的引力为变力,故克服引力所做的功不等于mgH,所以该同学的方法不正确;
由引力势能定义可知探月飞船从月球表面发送到H处引力势能的改变量EP=(-G
Mm
R+H
)-(-G
Mm
R
)=GMm
H
R(R+H)

由能量守恒定律可知,将探月飞船从月球表面发送到H处所需的能量为:E=
1
2
mv2+△Ep=
1
2
m
GM
R+H
+
GMmH
R(R+H)
=
GMm(R+2H)
2R(R+H)

答:(1)飞船在距月球表面H(H>
R
3
)高的环月轨道运行时的速度v为

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,一质量为m、带电量为q的物体处于场强按E=E0-kt(E0、k均为大于零的常数,取水平向左为正方向)变化的电场中,物体与竖直墙壁间动摩擦因数为μ,当t=0时刻物体处于静止
如图所示,一质量为m、带电量
酒后驾驶会导致许多安全隐患,是因为驾驶员的反应时间变长,反应时间是指驾驶员从发现情况到采取制动的时间.下表中“思考距离”是指驾驶员从发现情况到采取制动的时间内汽车行
酒后驾驶会导致许多安全隐患
如图所示,小球从高处下落到竖直放置的轻弹簧上,从接触弹簧开始到将弹簧压缩到最短的过程中,下列传述正确的是()A.小球的速度一直减小B.小球的加速度先减小后增大C.小球的加
如图所示,小球从高处下落到
如图所示,一个质量m=20kg的物体放在光滑水平地面上.对物体施加一个F=10N的水平拉力,使物体由静止开始做匀加速直线运动.求:(1)物体在4.0s时间内的位移大小;(2)拉力F在4.
如图所示,一个质量m=20kg的
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,
如图,纸面内有E、F、G三点,