一个质量为m、带+q电量的小球,用长L的绝缘细线悬吊在竖直向下的场强为E的匀强电场中.如果将细线拉至与竖直方向成θ角,然后将小球无初速释放,如图所示.求小球运动到最低点时

首页 > 考试 > 物理 > 高中物理 > 牛顿第二定律/2022-10-29 / 加入收藏 / 阅读 [打印]

◎ 题目

一个质量为m、带+q电量的小球,用长L的绝缘细线悬吊在竖直向下的场强为E的匀强电场中.如果将细线拉至与竖直方向成θ角,然后将小球无初速释放,如图所示.求小球运动到最低点时细线的拉力多大.
魔方格

◎ 答案

设小球通过最低点时的速度为v,
根据动能定理:mgL(1-cosθ)+qEL(1-cosθ)=
1
2
mu2-0

解得v=

(2g+
2qE
m
)L(1-cosθ)

根据牛顿第二定律:F=m
v2
L

设线的拉力为T,则T-mg-qE=m
v2
L

解得T=3mg+3qE-2(mg+qE)cosθ
答:小球运动到最低点时细线的拉力为3mg+3qE-2(mg+qE)cosθ.

◎ 解析

“略”

◎ 知识点

    专家分析,试题“一个质量为m、带+q电量的小球,用长L的绝缘细线悬吊在竖直向下的场强为E的匀强电场中.如果将细线拉至与竖直方向成θ角,然后将小球无初速释放,如图所示.求小球运动到最低点时…”主要考查了你对  【牛顿第二定律】,【动能定理】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐