(B)游乐场的过山车可以底朝天在圆轨道上运行,游客却不会掉下来.我们把这种情况抽象为如图的模型:弧形轨道的下端与竖直圆轨道相接,使小球从弧形轨道上端滚下,小球进入圆轨

首页 > 考试 > 物理 > 高中物理 > 牛顿第二定律/2022-10-29 / 加入收藏 / 阅读 [打印]

◎ 题目

(B)游乐场的过山车可以底朝天在圆轨道上运行,游客却不会掉下来.我们把这种情况抽象为如图的模型:弧形轨道的下端与竖直圆轨道相接,使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动,小球由静止放开时的位置比轨道最低点高出h.实验发现,只要h大于一定值,小球就可以顺利通过圆轨道的最高点.如果已知圆轨道的半径为R=0.2m,取g=10m/s2,不考虑摩擦等阻力.
(1)h至少要等于多大,小球才能恰好通过最高点?
(2)若小球通过最高点时,对轨道的压力不大于重力,求h的范围?
(3)改变h的数值,用压力传感器测出小球到达轨道最高点时对轨道的压力大小FN,试通过计算在纸上作出FN-h图象(已知小球质量0.1kg)

魔方格

◎ 答案

(1)由机械能守恒定律:mg(h-2R)=
1
2
mv2

小球在最高点:mg=m
v2
R

所以:h=2.5R=0.5m     
(2)小球在最高点:mg+FN=m
v12
R

根据题意FN≤mg  
所以v12≤2gR
根据机械能守恒定律,有:mg(h′-2R)=
1
2
mv12

解得h′≤3R=0.6m
所以H的范围从0.5-0.6m   
(3)根据机械能守恒定律,有:mg(h-2R)=
1
2
mv2

在最高点,合力提供向心力,根据牛顿第二定律,有:FN+mg=m
v2
R

两式联立得到:FN=
2mg
R
h-5mg=10h-5
,图象如图所示;

魔方格

答:(1)h至少要等于0.5m,小球才能恰好通过最高点;
(2)若小球通过最高点时,对轨道的压力不大于重力,则h的范围为:0.5m≤h≤0.6m;
(3)如图所示.

◎ 解析

“略”

◎ 知识点

    专家分析,试题“(B)游乐场的过山车可以底朝天在圆轨道上运行,游客却不会掉下来.我们把这种情况抽象为如图的模型:弧形轨道的下端与竖直圆轨道相接,使小球从弧形轨道上端滚下,小球进入圆轨…”主要考查了你对  【向心力】,【牛顿第二定律】,【机械能守恒定律】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐