v | B | 和
,则有
>
=
(8)
在物块A、B发生碰撞的极短时间内,木板C对它们的摩擦力的冲量非常小,可忽略不计.故在碰撞过程中,A与B构成的系统动量守恒,而木板C的速度保持不变,因为物块A、B间的碰撞是弹性的,系统的机械能守恒,又因为质量相等,由动量守恒和机械能守恒可以证明(证明从略),碰撞前后A、B交换速度,若碰撞刚结束时,A、B、C三者速度分别为
、
和
,则有
=
=
=
(9)
由(8)、(9)式可知,物块A与木板C速度相等,保持相对静止,B相对AC向右运动,以后发生的过程相当于第1问中所进行的延续,由物块B代替A继续向右运动.
若物块B刚好与挡板P不发生碰撞,则物块B以速
从C板的中点运动到挡板P所在处时与C的速度相等.A与C的速度大小是相等的,A、B、C三者的速度相等,设此时三者的速度
,根据动量守恒定律有m
=3m
(10)
A以初速度
开始运动,接着与B发生完全弹性碰撞,碰撞后物块A相对木板C静止,B到达P所在处这一整个过程中,先是A相对C运动的路程为L,接着是B相对C运动的路程为L,整个系统动能的改变,等于系统内部相互间的滑动摩擦力做功的代数和,即
(3m)
-
m
=-μmg.2L (11)
解(10)、(11)两式得
=