如图,ABCD为竖直平面内的光滑绝缘轨道,其中AB段是倾斜的,倾角为37°,BC段是水平的,CD段为半径R=0.15m的半圆,三段轨道均光滑连接,整个轨道处在竖直向下的匀强电场中,
◎ 题目
如图,ABCD为竖直平面内的光滑绝缘轨道,其中AB段是倾斜的,倾角为37°,BC段是水平的,CD段为半径R=0.15m的半圆,三段轨道均光滑连接,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103 V/m.一带正电的导体小球甲,在A点从静止开始沿轨道运动,与静止在C点不带电的相同导体小球乙发生弹性碰撞,碰撞后速度交换(即碰后甲的速度变成碰前瞬间乙的速度,乙的速度变成碰前瞬间甲的速度).已知甲、乙两球的质量均为m=1.0×10-2㎏,小球甲所带电荷量为q甲=2.0×10-5C,g取10m/s2,假设甲、乙两球可视为质点,并不考虑它们之间的静电力,且整个运动过程与轨道间无电荷转移. (1)若甲、乙两球碰撞后,小球乙恰能通过轨道的最高点D,试求小球乙在刚过C点时对轨道的压力; (2)若水平轨道足够长,在甲、乙两球碰撞后,小球乙能通过轨道的最高点D,则小球甲应至少从距BC水平面多高的地方滑下? (3)若倾斜轨道AB可在水平轨道上移动,在满足(1)问和能垂直打在倾斜轨道的条件下,试问小球乙在离开D点后经多长时间打在倾斜轨道AB上? |
◎ 答案
因甲乙小球相同,则碰撞后两个小球的电量都为q=
其电场力F=Eq=0.05N,G=mg=0.1N (1)设小球乙恰能通过轨道的最高点D时的速率为vD,在D点:由牛顿第二定律得: Eq+mg=m
小球乙从C到D的过程,由动能定理: -(mg+Eq)×2R=
在C点:由牛顿第二定律得:NC-mg-Eq=m
解得:NC=6(Eq+mg)=0.9N 由牛顿第三定律得:小球乙在刚过C点时对轨道的压力大小为N=0.9N,方向竖直向下. (2)设小球甲从高度为h时滑下与小球乙碰撞后,小球乙恰能通过轨道的最高点D, 由动能定理:(mg+Eq甲)×h=
解得:h=
(3)小球乙离开D点做类平抛运动,加速度a=
当小球乙垂直打在斜面上时,其竖直速度vy=at=vctan53°=0.2m/s 故:时间t=
答:(1)小球乙在刚过C点时对轨道的压力是0.9N,方向竖直向下. (2)小球甲应至少从距BC水平面
(3)小球乙在离开D点后经
|
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |