如图所示,光滑水平面上静止一质量为M=0.98㎏的物块.紧挨平台右侧有传送带,与水平面成θ=30°角,传送带底端A点和顶端B点相距L=3m.一颗质量为m=0.02kg的子弹,以v0=300m/s的

首页 > 考试 > 物理 > 高中物理 > 牛顿第二定律/2022-10-29 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,光滑水平面上静止一质量为M=0.98㎏的物块.紧挨平台右侧有传送带,与水平面成θ=30°角,传送带底端A点和顶端B点相距L=3m.一颗质量为m=0.02kg的子弹,以v0=300m/s的水平向右的速度击中物块并陷在其中.物块滑过水平面并冲上传送带,物块通过A点前后速度大小不变.已知物块与传送带之间的动摩擦因数μ=0.2

3
,重力加速度g=10m/s2.
魔方格

( l )如果传送带静止不动,求物块在传送带上滑动的最远距离;
( 2 )如果传送带顺时针匀速运行(如图),为使物块能滑到B端,求传送带运行的最小速度:
( 3 )若物块用最短时间从A端滑到B端,求此过程中传送带对物块做的功.

◎ 答案

(1)设子弹击中物体后共同速度为v,根据动量守恒:mv0=(m+M)v    
设物块滑上传送带的最远距离为s,根据动能定理得:-(m+M)gs?sinθ+[-μ(m+M)gs?scosθ)=0-
1
2
(m+M)v2
        
代入数据可得:s=2.25m                                             
(2)设传送带为v1时,物块刚好能滑到传送带顶端,当物块速度大于v1时,物块所受摩擦力沿斜面向下,在此阶段物块加速度为a1,根据牛顿定律得:
(m+M)gsin30°+μ(m+M)gcos30°=(m+M)a1
此过程物块的位移为s1,则   
v21
-v2=-2a1s1 
物块的速度减小到v1后,所受摩擦力沿斜面向上,加速度变为a2,则
(m+M)gsin30°-μ(m+M)gcos30°=(m+M)a2
设物块的速度从v1减小到零时位移为s2,则:
0-
v21
=-2a2s2
由题意:s1+s2=L                  
由以上各式可得:v1=2m/s
(3)为使物块滑到顶端所需时间最短,物块所受摩擦力必须始终沿斜面向上,
W=μ(m+M)gcos30°L
代入数据得:W=9J

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,光滑水平面上静止一质量为M=0.98㎏的物块.紧挨平台右侧有传送带,与水平面成θ=30°角,传送带底端A点和顶端B点相距L=3m.一颗质量为m=0.02kg的子弹,以v0=300m/s的…”主要考查了你对  【牛顿第二定律】,【动能定理】,【动量守恒定律】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐