如图所示,与水平面成θ=37°的粗糙斜面与一光滑圆轨道相切于A点,斜面AB的长度s=2.3m,动摩擦因数μ=0.5,圆轨道半径为R=0.6m。让质量为m=1kg物体(可视为质点)从B点以某一沿

首页 > 考试 > 物理 > 高中物理 > 牛顿第二定律/2022-10-29 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,与水平面成θ=37°的粗糙斜面与一光滑圆轨道相切于A点,斜面AB的长度s=2.3 m,动摩擦因数μ=0.5,圆轨道半径为R=0.6m。让质量为m=1kg物体(可视为质点)从B点以某一沿斜面向下的初速度释放,恰能沿轨道运动到圆轨道的最高点C,空气阻力忽略不计。(取sin37°=0.6,cos37°=0.8)

(1)求释放时的初动能;
(2)设物体从C点落回斜面AB上的P点,试通过计算判断P位置比圆心O高还是低.

◎ 答案

(1)9.2J(2)P位置比O点低

◎ 解析


试题分析:(1)物体恰好能过轨道的最高点,则在C点的速度为,(1)
A点距离圆环轨道最低端的高度为(2)
根据动能定理可得:(3)
联立可得
(2)如果恰好和圆心向平,则水平位移为,算出

所以P位置比O点低
点评:本题是动能定理与牛顿定律的综合应用,关键在于研究过程的选择,中等难度.

◎ 知识点

    专家分析,试题“如图所示,与水平面成θ=37°的粗糙斜面与一光滑圆轨道相切于A点,斜面AB的长度s=2.3m,动摩擦因数μ=0.5,圆轨道半径为R=0.6m。让质量为m=1kg物体(可视为质点)从B点以某一沿…”主要考查了你对  【牛顿第二定律】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐