如图,半径为R的光滑圆形轨道安置在一竖直平面上,左侧连接一个光滑的弧形轨道,右侧连接动摩擦因数为μ的水平轨道CD.一小球自弧形轨道上端的A处由静止释放,通过圆轨道后,

首页 > 考试 > 物理 > 高中物理 > 牛顿第二定律/2022-10-29 / 加入收藏 / 阅读 [打印]

◎ 题目

如图,半径为R的光滑圆形轨道安置在一竖直平面上,左侧连接一个光滑的弧形轨道,右侧连接动摩擦因数为μ的水平轨道CD.一小球自弧形轨道上端的A处由静止释放,通过圆轨道后,再滑上CD轨道.若在圆轨道最高点B处对轨道的压力恰好为零,到达D点时的速度为. 求:

⑴小球经过B点时速度的大小.
⑵小球释放时的高度h.
⑶水平轨道CD段的长度l.

◎ 答案

(1)vB=(2)(3)

◎ 解析


试题分析:⑴根据小球在B处对轨道压力为零,由向心力公式有
  ①  (2分)
解得小球、经过B点时速度大小vB= ②(2分)
⑵取轨道最低点为零势能点,由机械能守恒定律
 ③ (2分)
由②、③联立解得④(2分)
⑶对小球从最高点到D点全过程应用动能定理有
  (2分)
    又vD= ⑥ 
由④⑤⑥联立解得水平轨道CD段的长度(2分)
点评:掌握向心力公式外,还熟悉了牛顿第二定律,最后比较了机械能守恒定律与动能定理的优缺点.本题中小球在轨道最高点压力为零是解题的切入点.

◎ 知识点

    专家分析,试题“如图,半径为R的光滑圆形轨道安置在一竖直平面上,左侧连接一个光滑的弧形轨道,右侧连接动摩擦因数为μ的水平轨道CD.一小球自弧形轨道上端的A处由静止释放,通过圆轨道后,…”主要考查了你对  【牛顿第二定律】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐