如图10所示,质量为m的小球,由长为l的细线系住,线能承受的最大拉力是9mg,细线的另一端固定在A点,AB是过A的竖直线,E为AB上的一点,且AE=0.5l,过E作水平线EF,在EF上钉

首页 > 考试 > 物理 > 高中物理 > 牛顿第二定律/2022-10-29 / 加入收藏 / 阅读 [打印]

◎ 题目

如图10所示,质量为m的小球,由长为l的细线系住,线能承受的最大拉力是9mg,细线的另一端固定在A点,AB是过A的竖直线,E为AB上的一点,且AE=0.5l,过E作水平线EF,在EF上钉铁钉D,现将小球拉直水平,然后由静止释放,小球在运动过程中,不计细线与钉子碰撞时的能量损失,不考虑小球与细线间的碰撞.

(1)若钉铁钉位置在E点,求细线与钉子碰撞前后瞬间,细线的拉力分别是多少?
(2)若小球能绕钉子在竖直面内做完整的圆周运动,求钉子位置在水平线EF上距E点距离的取值。

◎ 答案

(1)(2) ≤x≤

◎ 解析


试题分析:(1)小球释放后沿圆周运动,运动过程中机械能守恒,设运动到最低点速度为v,由机械能守恒定律得,碰钉子瞬间前后小球运动的速率不变,碰钉子前瞬间圆周运动半径为l,碰钉子前瞬间线的拉力为F1,碰钉子后瞬间圆周运动半径为l/2,碰钉子后瞬间线的拉力为F2,由圆周运动、牛顿第二定律得:

(2)设在D点绳刚好承受最大拉力,记DE=x1,则:AD=
悬线碰到钉子后,绕钉做圆周运动的半径为:r1=l-AD= l-
当小球落到D点正下方时,绳受到的最大拉力为F,此时小球的速度v1,由牛顿第二定律有:F-mg=结合F≤9mg 
由机械能守恒定律得:mg (+r1)= mv12
由上式联立解得:x1
随着x的减小,即钉子左移,绕钉子做圆周运动的半径越来越大.转至最高点的临界速度也越来越大,但根据机械能守恒定律,半径r越大,转至最高点的瞬时速度越小,当这个瞬时速度小于临界速度时,小球就不能到达圆的最高点了.
设钉子在G点小球刚能绕钉做圆周运动到达圆的最高点,设EG=x2
则:AG=  r2=l-AG= l-在最高点:mg≤
由机械能守恒定律得:mg (—r2)= mv22联立得:x2
钉子位置在水平线EF上距E点距离的取值范围是: ≤x≤

◎ 知识点

    专家分析,试题“如图10所示,质量为m的小球,由长为l的细线系住,线能承受的最大拉力是9mg,细线的另一端固定在A点,AB是过A的竖直线,E为AB上的一点,且AE=0.5l,过E作水平线EF,在EF上钉…”主要考查了你对  【牛顿第二定律】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐