在一次抗洪救灾工作中,一架直升机A用长H=50m的悬索(重力可忽略不计)系住一质量m=50kg的被困人员B,直升机A和被困人员B以v0=10m/s的速度一起沿水平方向匀速运动,如图甲所示

◎ 题目

在一次抗洪救灾工作中,一架直升机A用长H=50 m的悬索(重力可忽略不计)系住一质量m=50 kg的被困人员B,直升机A和被困人员Bv0=10 m/s的速度一起沿水平方向匀速运动,如图甲所示.某时刻开始收悬索将人吊起,在5 s时间内,AB之间的竖直距离以l=50-t2(单位:m)的规律变化,取g=10 m/s2
(1)求这段时间内悬索对被困人员B 的拉力大小
(2)直升机在t=5 s时停止收悬索,但发现仍然未脱离洪水围困区,为将被困人员B尽快运送到安全处,飞机在空中旋转后静止在空中寻找最近的安全目标,致使被困人员B在空中做圆周运动,如图乙所示.此时悬索与竖直方向成37°角,不计空气阻力,求被困人员B做圆周运动的线速度以及悬索对被困人员B的拉力.(sin 37°=0.6,cos 37°=0.8)

◎ 答案

解:(1)被困人员在水平方向上做匀速直线运动,在竖直方向上被困人员的位移yHl=50-(50-t2)=t2,由此可知,被困人员在竖直方向上做初速度为零、加速度a=2 m/s2的匀加速直线运动
由牛顿第二定律可得Fmgma
解得悬索的拉力Fm(ga)=600 N
(2)=H-y=25 m,旋转半径rsin 37°
mgtan 37°
解得
此时被困人员B的受力情况如图所示

由图可知FTcos 37°=mg,解得FT=625 N

◎ 解析

“略”

◎ 知识点

    专家分析,试题“在一次抗洪救灾工作中,一架直升机A用长H=50m的悬索(重力可忽略不计)系住一质量m=50kg的被困人员B,直升机A和被困人员B以v0=10m/s的速度一起沿水平方向匀速运动,如图甲所示…”主要考查了你对  【匀速直线运动】,【线速度】,【向心力】,【牛顿运动定律的应用】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐