如图所示,摩托车做腾跃特技表演,从静止开始沿曲面冲上高0.8m、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW行驶,经过2s到达平台顶部,之后关闭发动机

首页 > 考试 > 物理 > 高中物理 > 动能定理/2022-11-05 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,摩托车做腾跃特技表演,从静止开始沿曲面冲上高0.8m、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW行驶,经过2s到达平台顶部,之后关闭发动机,然后水平离开平台,恰能无碰撞地沿圆弧切线从A点切入光滑竖直圆弧轨道,并沿轨道下滑.A、B为圆弧两端点,其连线水平,圆弧所对的圆心角θ为106°.已知圆弧半径为R=10m,人和车的总质量为180kg(人与摩托车可视为质点,忽略空气阻力,取g=10m/s2,sin53°=0.8,cos53°=0.6).求:
(1)从平台飞出到A点,人和车运动的速度vA大小.
(2)摩托车经圆弧最低点C时对轨道的压力.
(3)摩托车冲上高台过程中克服阻力(不包括重力)做的功.
魔方格

◎ 答案

(1)摩托车飞离平台后,做平抛运动,到达A点时,速度与水平方向夹角53°竖直方向的分速度vy=

2gh
=4m/s

故合速度vA=
vy
sin53°
=5m/s.
(2)从A到C过程,根据机械能守恒定律,得
  
1
2
m
v2A
+mgR(1-cos53°)=
1
2
mvc2

在C点,根据牛顿第二定律
    FN-mg=m
v2c
R

代入数值,得FN=3690N
由牛顿第三定律知,摩托车对轨道的压力大小也为3690N.
(3)摩托车上坡过程中,根据动能定理
     Pt-mgh-Wf=
1
2
mv2

在高台上速度v=vytan37°=3m/s,代入解得Wf=1350J.
答:
(1)从平台飞出到A点,人和车运动的速度vA大小为5m/s.
(2)摩托车经圆弧最低点C时对轨道的压力是3690N.
(3)摩托车冲上高台过程中克服阻力(不包括重力)做的功为1350J.

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,摩托车做腾跃特技表演,从静止开始沿曲面冲上高0.8m、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW行驶,经过2s到达平台顶部,之后关闭发动机…”主要考查了你对  【向心力】,【牛顿第二定律】,【牛顿第三定律】,【动能定理】,【机械能守恒定律】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐