如图所示,半径为R的四分之一圆弧形支架竖直放置,圆弧边缘C处有一小定滑轮,绳子不可伸长,不计一切摩擦,开始时,m1、m2两球静止,且m1>m2,试求:(1)m1释放后沿圆弧滑至最

首页 > 考试 > 物理 > 高中物理 > 动能定理/2022-11-05 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,半径为R的四分之一圆弧形支架竖直放置,圆弧边缘C处有一小定滑轮,绳子不可伸长,不计一切摩擦,开始时,m1、m2两球静止,且m1>m2,试求:
(1)m1释放后沿圆弧滑至最低点A时的速度.
(2)为使m1能到达A点,m1与m2之间必须满足什么关系.
(3)若A点离地高度为2R,m1滑到A点时绳子突然断开,则m1落地点离A点的水平距离是多少?

◎ 答案

(1)设m1滑至A点时的速度为v1,此时m2的速度为v2,由机械能守恒得:
m1gR-

2
m2gR=
1
2
m1v12+
1
2
m2v22
又v2=v1cos45°
得:v1=

4m1gR-4

2
m2gR
2m1+m2

(2)要使m1能到达A点,v1≥0且v2≥0,
必有:m1gR-

2
m2gR≥0,得:m1

2
m2
(3)由2R=
1
2
gt2,x=v1t得x=v1t=4R

m1-

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐