如图1所示,斜面AB与半径为0.5m的光滑竖直圆轨道BCD相切于B点,CD部分是半圆轨道,C、D为圆轨道的最低点和最高点.将质量为0.lkg的小物块(可视为质点)从轨道的ABC部分某处由

首页 > 考试 > 物理 > 高中物理 > 动能定理/2022-11-05 / 加入收藏 / 阅读 [打印]

◎ 题目

如图1所示,斜面AB与半径为0.5m的光滑竖直圆轨道BCD相切于B点,CD部分是半圆轨道,C、D为圆轨道的最低点和最高点.将质量为0.lkg的小物块(可视为质点)从轨道的ABC部分某处由静止释放,释放点与C点的高度差为h,用力传感器测出物块经C点时对轨道的压力F,得到F与h的关系图象如图2所示.已知物块与斜面间的动摩擦因数为0.3,重力加速度g取l0m/s2.求:
(l)图2中a、b两点的纵坐标Fa、Fb数值.
(2)物块在斜面上的释放点与B点的距离l为多大时,物块离开D点后落到轨道上与圆心O等高的位置上.

◎ 答案

(1)图2中,h=0时,F的读数为滑块的重力,为1N;
在B点释放时,根据动能定理,有:
mgh=
1
2
m
v2C

在C点,支持力和重力的合力提供向心力,故:
F-mg=m
v2C
R

由①②解得:
F=mg+
2mg
R
h
=1+
2×1
0.5
×0.1
=1.4N
(2)设斜面倾角为θ,由几何关系
hB=R(1-cosθ)
解得:cosθ=0.8
故sinθ=0.6
物体离开D点后,做平抛运动,有:
R=
1
2
gt2

R
sinθ
=vDt

物体从斜面释放到D点,由动能定理:
mglsinθ+mgR(1-cosθ)-μmglcosθ-mg?2R=
1
2
m
v2D

代入数据,得:l=3.46m
答:(l)图2中a点的纵坐标为1N,b点的纵坐标为1.4N;
(2)物块在斜面上的释放点与B点的距离l为3.46m时,物块离开D点后落到轨道上与圆心O等高的位置上.

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图1所示,斜面AB与半径为0.5m的光滑竖直圆轨道BCD相切于B点,CD部分是半圆轨道,C、D为圆轨道的最低点和最高点.将质量为0.lkg的小物块(可视为质点)从轨道的ABC部分某处由…”主要考查了你对  【动能定理】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐