如图所示,ABC为固定在竖直平面内的轨道,AB段为光滑圆弧,对应的圆心角q=37°,OA竖直,半径r=2.5m,BC为足够长的平直倾斜轨道,倾角q=37°。已知斜轨BC与小物体间的动摩擦因

首页 > 考试 > 物理 > 高中物理 > 动能定理/2022-11-05 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,ABC为固定在竖直平面内的轨道,AB段为光滑圆弧,对应的圆心角q=37°,OA竖直,半径r=2.5m,BC为足够长的平直倾斜轨道,倾角q=37°。已知斜轨BC与小物体间的动摩擦因数m=0.25。各段轨道均平滑连接,轨道所在区域有E=4′103N/C、方向竖直向下的匀强电场。质量m=5′10-2kg、电荷量q=+1′10-4C的小物体(视为质点)被一个压紧的弹簧发射后,沿AB圆弧轨道向左上滑,在B点以速度v0=3m/s冲上斜轨。设小物体的电荷量保持不变。重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8。(设弹簧每次均为弹性形变。)则:

(1)求弹簧初始的弹性势能;
(2)在斜轨上小物体能到达的最高点为P,求小物块从A到P的电势能变化量;
(3)描述小物体最终的运动情况。

◎ 答案

(1)初始的弹性势能0.675J;(2)ΔE=0.275J;(3)小物体沿AB段光滑圆弧下滑,压缩弹簧后被反弹,再次沿AB段光滑圆弧上滑至B点,速度减为零,再次下滑,如此往复运动。

◎ 解析


试题分析: (1)设弹簧对小物体做功为W,由动能定理,得:
W-mgr(1-cosq)-Eqr(1-cosq)=mv02-0, 代入数据,得W=0.675J,即初始的弹性势能;        
(2)设BP长为L,由动能定理,得:
-(mg+Eq)L sinq-m(mg+qE)Lcosq=0-mv02
所以ΔE=Eqr(1-cosq)+EqL sinq 
解得: ΔE=0.275J;
(3)小物体沿AB段光滑圆弧下滑,压缩弹簧后被反弹,再次沿AB段光滑圆弧上滑至B点,速度减为零,再次下滑,如此往复运动。

◎ 知识点

    专家分析,试题“如图所示,ABC为固定在竖直平面内的轨道,AB段为光滑圆弧,对应的圆心角q=37°,OA竖直,半径r=2.5m,BC为足够长的平直倾斜轨道,倾角q=37°。已知斜轨BC与小物体间的动摩擦因…”主要考查了你对  【动能定理】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐