如图所示,在竖直平面内固定有两个很靠近的同心圆轨道,外圆光滑内圆粗糙.一质量为m=0.2kg的小球从轨道的最低点以初速度v0向右运动,球的直径略小于两圆间距,球运动的轨道
◎ 题目
如图所示,在竖直平面内固定有两个很靠近的同心圆轨道,外圆光滑内圆粗糙.一质量为m=0.2kg的小球从轨道的最低点以初速度v0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.5米,g取10m/s2,不计空气阻力,设小球过最低点时重力势能为零,下列说法正确的是( )
|
◎ 答案
A、若小球运动到最高点时受到为0,则小球在运动过程中一定与内圆接触,受到摩擦力作用,要克服摩擦力做功,机械能不守恒,故A正确; B、如果内圆光滑,小球在运动过程中不受摩擦力,小球在运动过程中机械能守恒,如果小球运动到最高点时速度为0,由机械能守恒定律得:
C、小球如果不挤压内轨,则小球到达最高点速度最小时,小球的重力提供向心力,由牛顿第二定律得:mg=m
D、小球的初速度v0=
|