如图所示,两根正对的平行金属直轨道MN、M′N′位于同一水平面上,两轨道之间的距离l=0.50m.轨道的MM′端之间接一阻值R=0.40Ω的定值电阻,NN′端与两条位于竖直面内的半圆形光

首页 > 考试 > 物理 > 高中物理 > 功能关系/2022-11-10 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,两根正对的平行金属直轨道MN、M′N′位于同一水平面上,两轨道之间的距离l=0.50m.轨道的MM′端之间接一阻值R=0.40Ω的定值电阻,NN′端与两条位于竖直面内的半圆形光滑金属轨道NP、N′P′平滑连接,两半圆轨道的半径均为R0=0.50m.直轨道的右端处于竖直向下、磁感应强度B=0.64T的匀强磁场中,磁场区域的宽度d=0.80m,且其右边界与NN′重合.现有一质量m=0.20kg、电阻r=0.10Ω的导体杆ab静止在距磁场的左边界s=2.0m处.在与杆垂直的水平恒力F=2.0N的作用下ab杆开始运动,当运动至磁场的左边界时撤去F,结果导体ab恰好能以最小速度通过半圆形轨道的最高点PP′.已知导体杆ab在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g=10m/s2,求:  
(1)导体杆刚进入磁场时,通过导体杆上的电流大小和方向;
(2)导体杆穿过磁场的过程中通过电阻R上的电荷量;
(3)导体杆穿过磁场的过程中整个电路产生的焦耳热.      

◎ 答案

解:(1)设导体杆在F的作用下运动到磁场的左边界时的速度为υ1
根据动能定理则有(Fμmg)s=
导体杆刚进入磁场时产生的感应电动势E=Blυ1
此时通过导体杆的电流大小I=E/(R+r)=3.8A(或3.84A) 
根据右手定则可知,电流方向为b向a
(2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为E平均
则由法拉第电磁感应定律有E平均=ΔΦ/t=Bld/t 
通过电阻R的感应电流的平均值为I平均=E平均/(R+r)
通过电阻R的电荷量q=I平均t=0.51C
(3)设导体杆离开磁场时的速度大小为υ2,运动到圆轨道最高点的速度为υ3,因导体杆恰好能以最小速度通过半圆形轨道的最高点,根据牛顿第二定律,对导体杆在轨道最高点时有 mg=mυ23/R0  
对于导体杆从NN′运动至PP′的过程,根据机械能守恒定律有+mg2R0
解得υ2=5.0m/s
导体杆穿过磁场的过程中损失的机械能ΔE==1.1J
此过程中电路中产生的焦耳热为Q=ΔE-μmgd=0.94J

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,两根正对的平行金属直轨道MN、M′N′位于同一水平面上,两轨道之间的距离l=0.50m.轨道的MM′端之间接一阻值R=0.40Ω的定值电阻,NN′端与两条位于竖直面内的半圆形光…”主要考查了你对  【动能定理】,【机械能守恒定律】,【功能关系】,【感应电流】,【法拉第电磁感应定律】,【导体切割磁感线时的感应电动势】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐