如图所示,在绝缘水平面上的P点放置一个质量为mA=0.02kg的带负电滑块A,带电荷量q=1.0×10-6C。在A的左边相距的Q点放置一个不带电的滑块B,质量为mB=0.04kg,滑块B距左边竖

首页 > 考试 > 物理 > 高中物理 > 碰撞/2022-11-16 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,在绝缘水平面上的P点放置一个质量为mA=0.02kg的带负电滑块A,带电荷量q=1.0×10-6 C。在A的左边相距的Q点放置一个不带电的滑块B,质量为mB=0.04kg,滑块B距左边竖直绝缘墙壁s=0.15m。在水平面上方空间加一方向水平向右的匀强电场,电场强度为E=4.0×105N/C,使A由静止释放后向左滑动并与B发生碰撞,碰撞的时间极短,碰撞后两滑块结合在一起共同运动,与墙壁发生碰撞时没有机械能损失,两滑块都可以视为质点。已知水平面OQ部分粗糙,其余部分光滑,两滑块与粗糙水平面OQ间的动摩擦因数均为μ=0.50,假设最大静摩擦力等于滑动摩擦力,取g=10m/s2。求:
(1)A经过多少时间与B相碰?相碰结合后的速度是多少?
(2)AB与墙壁碰撞后在水平面上滑行的过程中,离开墙壁的最大距离是多少?
(3)A、B相碰结合后的运动过程中,由于摩擦而产生的热是多少?通过的总路程是多少?

◎ 答案

解:(1)由于PQ部分光滑,滑块A只在电场力作用下加速运动,设经时间t与B相碰,A与B相遇前的速度大小为v1,结合后的共同速度大小为v2,则


解得s,m/s
滑块A、B碰撞的过程中动量守恒,即m/s
(2)两滑块共同运动,与墙壁发生碰撞后返回,第一次速度为零时,两滑块离开墙壁的距离最大,设为 ,在这段过程中,由动能定理得

解得m
(3)由于N,N,,即电场力大于滑动摩擦力,AB向右速度为零后在电场力的作用下向左运动,最终停在墙角O点处,设由于摩擦而产生的热为Q,由能量守恒得
J
设AB第二次与墙壁发生碰撞后返回,滑块离开墙壁的最大距离为,假设L2<s,在这段过程中,由动能定理得,解得L2≈0.064m
L2<s=0.15m ,符合假设,即AB第二次与墙壁发生碰撞后返回停在Q点的左侧,以后只在粗糙水平面OQ上运动
设在粗糙水平面OQ部分运动的总路程s1,则,s1=0.6m
设AB相碰结合后的运动过程中通过的总路程是s2,则m

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,在绝缘水平面上的P点放置一个质量为mA=0.02kg的带负电滑块A,带电荷量q=1.0×10-6C。在A的左边相距的Q点放置一个不带电的滑块B,质量为mB=0.04kg,滑块B距左边竖…”主要考查了你对  【碰撞】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐