如图(甲)所示,质量分别为m=1kg、M=2kg的A、B两个小物块,用轻弹簧相连而静止在光滑水平面上,在A的左侧某处另有一质量也为m=1kg的小物块C,以v0=4m/s的速度正对A向右做匀速

首页 > 考试 > 物理 > 高中物理 > 动量守恒定律/2022-11-16 / 加入收藏 / 阅读 [打印]

◎ 题目

如图(甲)所示,质量分别为m=1kg、M=2kg的A、B两个小物块,用轻弹簧相连而静止在光滑水平面上,在A的左侧某处另有一质量也为m=1kg的小物块C,以v0=4m/s的速度正对A向右做匀速直线运动,一旦与A接触就将黏合在一起运动(黏合时间极短).若在C与A接触前,瞬间使A获得一初速度vA0,并从此时刻开始计时,规定向右为正方向,A的速度随时间变化的图象如图(乙)所示(此图象仅限C与A接触前),弹簧始终未超出弹性限度,vA0=6m/s.求:
(1)在C与A接触前,当A的速度分别为6m/s、2m/s、-2m/s时,求对应状态下B的速度,并据此在图(乙)中粗略画出B的速度随时间变化的图象(要求画出IT时间内).
(2)当A的速度为vA时C与A接触,在接触后的运动过程中弹簧的弹性势能为Ep,当vA取何值时,Ep有最大值?试求出Ep的最大值.

魔方格

◎ 答案


魔方格
(1)由动量守恒定律可得:
mvA0=mvA+MvB  ①
由①式可得:vB=
m
M
(vA0-vA)

代入vA=6m/s、2m/s、-2m/s时,得到对应的
VB=0、2m/s、4m/s
描给的图象如答图所示
(2)无论C与A如何接触,当A、B、C具有相同的速度u时弹簧的弹性势能EP最大.
由动量守恒定律可得:
mv0+mvA0=(2m+M)u ③
由③式解得:u=2.5(m/s)
设C与A碰撞前后A的瞬时速度分别为vA、v,碰撞过程中损失的机械能为△E,
由动量守恒和能量守恒定律可得:
mv0+mvA=2mv ④
△E=
1
2
mv02+
1
2
mvA2-
1
2
×2mv2

由④⑤式可得:△E=
1
4
m(v0-vA)2

设弹簧的最大弹性势能为EP,由能量守恒可得
1
2
mv02+
1
2
mvA_2=
1
2
×(2m+M)u2+△E+Ep

由⑦式可得:Ep=
1
2
mv02+
1
2
mvA_2-
1
2
×(2m+M)u2-
1
4
×m(v0-vA)2

由⑧式得:当vA
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐