如图所示,一个质量为m的长木板静止在光滑的水平面上,并与半径为R的14光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为S;另一质量为2m的小滑块从轨道的最高

首页 > 考试 > 物理 > 高中物理 > 动量守恒定律/2022-11-16 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,一个质量为m的长木板静止在光滑的水平面上,并与半径为R的
1
4
光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为S;另一质量为2m的小滑块从轨道的最高点由静止开始下滑,从圆弧的最低点A滑上木板.设长木板每次与竖直墙的碰撞时间极短且无机械能损失.已知滑块与长木板间的动摩擦因数为μ.试求
(1)滑块到达A点时对轨道的压力的大小
(2)若滑块不会滑离长木板,试讨论长木板与墙第一次碰撞前的速度v与S的关系
(3)若S足够大,为了使滑块不滑离长木板,板长L应满足什么条件.
魔方格

◎ 答案

(1)滑块从轨道的最高点到最低点,机械能守恒,设到达A点的速度为vA
则 
1
2
2mvA2=2mgR

得:vA=

2gR

在A点有:NA-2mg=
2mvA2
R

由②③得:NA=6mg④
由牛顿第三定律,滑块在A点对轨道的压力 NA=6mg
(2)若第一次碰撞前的瞬间,滑块与木板达到共同速度v,
则:(2m+m)v=2mvA
μ2mgS=
1
2
mv2

由②⑥⑦得:S=
2R

ⅰ.若S≥
2R
,则木板与墙第一次碰前瞬间的速度为v=
2
3

2gR

ⅱ.若S<
2R
,则木板与墙第一次碰前瞬间的速度为v'
则:
1
2
mv2=μ2mgS

得:v'=2

μgS

(3)因为S足够大,每次碰前滑块与木板共速;因为M<m,每次碰后系统的总动量方向向右,要使滑块不滑离长木板,最终木板停在墙边,滑块停在木板上.
由能量守恒得:μ2mgL≥
1
2
2mvA2

解得:L≥
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,质量为m的子弹以速度v0水平击穿放在光滑水平地面上的木块.木块长L,质量为M,木块对子弹的阻力恒定不变,子弹穿过木块后木块获得动能为Ek.若木块或子弹的质量发生
如图所示,质量为m的子弹以速
如图所示,上表面有一段光滑圆弧的质量为M的小车A置于光滑平面上,在一质量为m的物体B自弧上端自由滑下的同时释放A,则()A.在B下滑过程中,B的机械能守恒B.轨道对B的支持力对
如图所示,上表面有一段光滑
如图所示,质量为M的滑块B套在光滑的水平杆上可自由滑动,质量为m的小球A用一长为L的轻杆与B上的O点相连接,轻杆处于水平位置,可绕O点在竖直面内自由转动.(1)固定滑块B,给
如图所示,质量为M的滑块B套
如图所示,质量为M的木板静止在光滑水平面上,右端有一个固定在木板上的挡板D,挡板上固定一个轻弹簧,将一个质量为m的小物块放在弹簧的左端,将弹簧压缩,并用细线拴住.若烧
如图所示,质量为M的木板静止
两个质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上.A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示.一质量为m的物块位于劈A的倾斜面上,距水平面的高度
两个质量分别为M1和M2的劈A和