如图所示,在离地面H=5.45m的O处用长L=0.45m的不可伸长的细线挂一质量为90g的爆竹(火药质量忽略不计),把爆竹拉起至D点使细线水平伸直,点燃导火线后将爆竹无初速度释放,

首页 > 考试 > 物理 > 高中物理 > 动量守恒定律/2022-11-16 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,在离地面H=5.45m的O处用长L=0.45m的不可伸长的细线挂一质量为90g的爆竹(火药质量忽略不计),把爆竹拉起至D点使细线水平伸直,点燃导火线后将爆竹无初速度释放,爆竹刚好到达最低点B时炸成质量相等的两块,一块朝相反方向水平抛出,落到地面上的A处,抛出的水平距离s=5m.另一块仍系在细线上继续做圆周运动通过最高点C.假设火药爆炸释放的能量全部转化为爆竹碎片的动能,空气阻力忽略不计,取g=10m/s2,求:
(1)爆炸瞬间反向抛出的那一块的水平速度v1的大小;
(2)继续做圆周运动的那一块通过最高点时的细线的拉力T的大小.
(3)火药爆炸释放的能量E.

◎ 答案

(1)设爆竹的总质量为2m,刚好到达B时的速度为v,爆炸后抛出的那一块的水平速度为v1,做圆周运动的那一块的水平速度为v2,则对做平抛运动的那一块有:
H-L=
1
2
gt2,s=v1t,带入数据,得:v1=5m/s
(2)爆竹从D点运动到B点的过程中机械能守恒,所以有2mgL=
1
2
×2mv2
爆竹爆炸前后动量守恒,所以有2mv=mv2-mv1,解得:v2=11m/s
设做圆周运动的那块通过最高点时的速度为vc,由机械能守恒定律可得:
1
2
mv22=
1
2
mvc2+2mgL;
设最高点时线对爆竹的拉力为T,则由牛顿第二定律可得:T+mg=m
vc2
L

联立以上各式,解得:T=9.85N
(3)火药爆炸释放的能量为:E=
1
2
mv12+
1
2
mv22-2mgL=2.88J
答:(1)爆炸瞬间反向抛出的那一块的水平速度v1的大小为5m/s;
(2)继续做圆周运动的那一块通过最高点时的细线的拉力T的大小9.85N.
(3)火药爆炸释放的能量E为2.88J.

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,在离地面H=5.45m的O处用长L=0.45m的不可伸长的细线挂一质量为90g的爆竹(火药质量忽略不计),把爆竹拉起至D点使细线水平伸直,点燃导火线后将爆竹无初速度释放,…”主要考查了你对  【动量守恒定律】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐