如图所示,一质量M=2.0kg的长木板AB静止在水平面上,木板的左侧固定一半径R=0.60m的四分之一圆弧形轨道,轨道末端的切线水平,轨道与木板靠在一起,且末端高度与木板高度相

◎ 题目

如图所示,一质量M=2.0kg的长木板AB静止在水平面上,木板的左侧固定一半径R=0.60m的四分之一圆弧形轨道,轨道末端的切线水平,轨道与木板靠在一起,且末端高度与木板高度相同。现在将质量m=1.0kg的小铁块(可视为质点)从弧形轨道顶端由静止释放,小铁块到达轨道底端时的速度v0=3.0m/s,最终小铁块和长木板达到共同速度。忽略长木板与地面间的摩擦。取重力加速度g=10m/s2。求
(1)小铁块在弧形轨道末端时所受支持力的大小F;
(2)小铁块在弧形轨道上下滑过程中克服摩擦力所做的功Wf
(3)小铁块和长木板达到的共同速度v。

◎ 答案

解:(1)小木块在弧形轨道末端时,满足
解得:
(2)根据动能定理
解得:
(3)根据动量守恒定律
解得:

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,一质量M=2.0kg的长木板AB静止在水平面上,木板的左侧固定一半径R=0.60m的四分之一圆弧形轨道,轨道末端的切线水平,轨道与木板靠在一起,且末端高度与木板高度相…”主要考查了你对  【向心力】,【动能定理】,【动量守恒定律的应用】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐