质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质

◎ 题目

质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:
(1)小物块到达最低点与Q碰撞之前瞬间的速度是多大?
(2)小物块Q离开平板车时平板车的速度为多大?
(3)平板车P的长度为多少?
(4)小物块Q落地时距小球的水平距离为多少?
魔方格

◎ 答案

(1)、小球由静止摆到最低点的过程中,机械能守恒,则有:
mgR(1-cos60°)=
1
2
m
v20

∴解得小物块到达最低点与Q碰撞之前瞬间的速度是:
v0=

gR

(2)、小球与物块Q相撞时,没有能量损失,满足动量守恒,机械能守恒,则知:
mv0=mv1+mvQ
1
2
v20
   =
1
2
m
v21
+
1
2
m
v2Q

由以上两式可知二者交换速度:v1=0,vQ=v0=

gR

小物块Q在平板车上滑行的过程中,满足动量守恒,则有:
mvQ=Mv+m?2v
又知M:m=4:1
v=
1
6
vQ =

gR
6

则小物块Q离开平板车时平板车的速度为2v=

gR
3

(3)、小物块Q在平板车P上滑动的过程中,部分动能转化为内能,由能的转化和守恒定律,知:mgμL=
1
2
 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接。A、B两滑块(可视为质点)用轻细绳拴接在一起,在它们中间
如图所示,在竖直面内有一个
如图所示,一个半径为R=1.00m粗糙的14圆弧轨道,固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度h=1.25m.在轨道末端放有质量为mB=0.30kg的小球B(视为质点),B
如图所示,一个半径为R=1.00
【选修3-5选做题】如图所示,固定在地面上的光滑圆弧轨道AB、EF,他们的圆心角均为90°,半径均为R。一质量为m、上表面长也为R的小车静止在光滑水平面CD上,小车上表面与轨道AB
【选修3-5选做题】如图所示,
【选修3-5选做题】如图所示,光滑水平面上A、B两小车质量都是M,A车头站立一质量为m的人,两车在同一直线上相向运动。为避免两车相撞,人从A车跃到B车上,最终A车停止运动,B车
【选修3-5选做题】如图所示,
水平光滑的地面上,质量为m的木块放在质量为M的平板小车的左端,M>m,它们一起以大小为v0的速度向右做匀速直线运动,木块与小车之间的动摩擦因数为μ,小车与竖直墙碰后立即以
水平光滑的地面上,质量为m的