(12分)如图所示,在轴上方有一竖直向下的匀强电场区域,电场强度为。轴下方分布有很多磁感应强度为的条形匀强磁场区域,其宽度均为为,相邻两磁场区域的间距为。现将一质量为

◎ 题目

(12分)如图所示,在轴上方有一竖直向下的匀强电场区域,电场强度为轴下方分布有很多磁感应强度为的条形匀强磁场区域,其宽度均为为,相邻两磁场区域的间距为。现将一质量为、电荷量为的带正电的粒子(不计重力)从轴上的某处静止释放。

(1)若粒子从坐标(0,)点由静止释放,要使它经过轴下方时,不会进入第二磁场区,应满足什么条件?
(2)若粒子从坐标(0,)点由静止释放,求自释放到第二次过轴的时间。

◎ 答案

(1)(2)

◎ 解析


试题分析:(1)粒子经电场加速,经过轴时速度大小为,满足:
   
之后进入下方磁场区,依据题意可知运动半径应满足:
   
  
由以上三式可得:  
(2)当粒子从的位置无初速释放后,先在电场中加速,加速时间为满足

解得  
进入磁场的速度大小为,圆周运动半径为

解得 
          
解得:   
根据粒子在空间运动轨迹可知,它最低能进入第二个磁场区,它在磁场区共运动时间为半个圆周运动的时间,经过第一无磁场区时运动方向与轴的夹角满足:
 
所以它在无磁场区的路程   
无磁场区运动时间   
总时间   
点评:该题是一道综合性较强的题,主要是考察了带电粒子在电场中的加速、偏转和在磁场的匀速圆周运动.解决此类问题常用的方法是对过程进行分段,对各个段内的运动情况进行具体分析,利用相关的知识进行解答.这要求我们要对带电粒子在电场和磁场中的运动规律要了如指掌,尤其是带电粒子在磁场中的偏转,确定轨迹的圆心是解决此类问题的关键.

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐