如图所示为一种获得高能粒子的装置.环形区域内存在垂直纸面向外、大小可调节的匀强磁场.质量为m、电量为+q的粒子在环中做半径为R的圆周运动.A、B为两块中心开有小孔的极板.原

◎ 题目

如图所示为一种获得高能粒子的装置.环形区域内存在垂直纸面向外、大小可调节的匀强磁场.质量为m、电量为+q的粒子在环中做半径为R的圆周运动.A、B为两块中心开有小孔的极板.原来电势都为零,每当粒子飞经A板时,A板电势升高为+U,B板电势仍保持为零,粒子在两板间电场中得到加速.每当粒子离开B板时,A板电势又降为零.粒子在电场一次次加速下动能不断增大,而绕行半径不变.
(1)设t=0时,粒子静止在A板小孔处,在电场作用下加速.求粒子第一次穿过B板时速度的大小v1
(2)为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增.求粒子绕行第n圈时磁感应强度的大小Bn
(3)求粒子绕行n圈所需的总时间tn总(设极板间距离远小于R,粒子在A、B极板间运动的时间可忽略不计).
魔方格

◎ 答案

(1)粒子第一次加速过程,根据动能定理得
    qU=
1
2
m
v21

解得,v1=

2qU
m

(2)粒子绕行第n圈时,nqU=
1
2
m
v2n
    
粒子受到的洛伦兹力提供向心力,qvnBn=m
v2n
R

解得:Bn=
1
R

2nmU
q

(3)粒子运动的周期表达式为:Tn=
2πR
vn
=
2πm
qBn
                 
粒子绕行第1圈,所用时间为t1=
2πm
qB1
,B1=
1
R

2mU
q

粒子绕行第2圈,所用时间为t2=
 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,I、Ⅱ、Ⅲ是竖直平面内三个相同的半圆形光滑轨道,K为轨道最低点,I处于匀强磁场中,Ⅱ和Ⅲ处于匀强电场中,三个完全相同的带正电小球a、b、c从轨道最高点自由下滑至第
如图所示,I、Ⅱ、Ⅲ是竖直平
如图甲所示,真空中水平放置的相距为d的平行金属板板长为L,两板上加有恒定电压后,板间可视为匀强电场。在t=0时,将图乙中所示的交变电压加在两板上,这时恰有一个质量为m、
如图甲所示,真空中水平放置
如图所示,一根长L=1.5m的光滑绝缘细直杆MN,竖直固定在场强为E=1.0×105N/C与水平方向成θ=30°角的倾斜向上的匀强电场中。杆的下端M固定一个带电小球A,电荷量Q=+4.5×10-6
如图所示,一根长L=1.5m的光
如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场
如图所示,在平面直角坐标系
如图(a)所示,两平行正对的金属板A、B间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处。若在t0时刻释放该粒子,粒子会时而向A板运动,时
如图(a)所示,两平行正对的