两块足够大的平行金属板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向).在t=0时

◎ 题目

两块足够大的平行金属板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向).在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力).若电场强度E0、磁感应强度B0、粒子的比荷q/m均已知,且t0=
2πm
qB0
,两板间距h=
10π2mE0
q
B20

魔方格

(1)求粒子在0~t0时间内的位移大小与极板间距h的比值.
(2)求粒子在两极板间做圆周运动的最大半径(用h表示).
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程).

◎ 答案


解法一:
(1)设粒子在0~t0时间内的位移大小为s1,由运动学公式和你对第二定律有:
s1=
1
2
a
t20
a=
qE0
m

又已知t0=
2πm
qB0
h=
10π2mE0
q
B20

联立以上两式解得:
s1
h
=
1
5

(2)粒子在t0~2t0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动.设运动速度大小为v1,轨道半径为R1,周期为T,则有:
v1=at0qv1B0=
m
v21
R1

联立以上两式得R1=
h

T=
2πm
qB0
,即粒子在t0~2t0时间内恰好完成一个周期的圆周运动.在2t0~3t0时间内,粒子做初速度为v1的匀加速直线运动,设位移为s2,则有:
s2=v1t0+
 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,I、Ⅱ、Ⅲ是竖直平面内三个相同的半圆形光滑轨道,K为轨道最低点,I处于匀强磁场中,Ⅱ和Ⅲ处于匀强电场中,三个完全相同的带正电小球a、b、c从轨道最高点自由下滑至第
如图所示,I、Ⅱ、Ⅲ是竖直平
如图甲所示,真空中水平放置的相距为d的平行金属板板长为L,两板上加有恒定电压后,板间可视为匀强电场。在t=0时,将图乙中所示的交变电压加在两板上,这时恰有一个质量为m、
如图甲所示,真空中水平放置
如图所示,一根长L=1.5m的光滑绝缘细直杆MN,竖直固定在场强为E=1.0×105N/C与水平方向成θ=30°角的倾斜向上的匀强电场中。杆的下端M固定一个带电小球A,电荷量Q=+4.5×10-6
如图所示,一根长L=1.5m的光
如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场
如图所示,在平面直角坐标系
如图(a)所示,两平行正对的金属板A、B间加有如图(b)所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P处。若在t0时刻释放该粒子,粒子会时而向A板运动,时
如图(a)所示,两平行正对的