如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T.质量为m的

◎ 题目

如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5T.质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆a b,测得最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨距为L=2m,重力加速度g取l0m/s2,轨道足够长且电阻不计.

魔方格

(1)当R=0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;
(2)求金属杆的质量m和阻值r;
(3)当R=4Ω时,求回路瞬时电功率每增加1W的过程中合外力对杆做的功W.

◎ 答案

(1)由图可知,当R=0 时,杆最终以v=2m/s匀速运动,产生电动势 E=BLv=0.5×2×2V=2V 
由右手定则判断得知,杆中电流方向从b→a 
(2)设最大速度为v,杆切割磁感线产生的感应电动势 E=BLv
由闭合电路的欧姆定律:I=
E
R+r

杆达到最大速度时满足 mgsinθ-BIL=0
解得:v=
mgsinθ
B2L2
R+
mgsinθ
B2L2
r

由图象可知:斜率为k=
4-2
2
m/(s?Ω)=1m/(s?Ω)
,纵截距为v0=2m/s,
得到:
mgsinθ
B2L2
r
=v0
mgsinθ
B2L2
=k   
解得:m=0.2kg,r=2Ω     
(3)由题意:E=BLv,P=
E2
R+r

得  P=
B2L2v2
R+r
,则△P=
B2L2
v22
R+r
-
B2L2
v21
R+r

由动能定理得
W=
1
2
m
v22
-
1
2
m
v21

联立得 W=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
在如图a所示电路中,闭合电键S,当滑动变阻器的滑动触头P向下滑动的过程中,四个理想电表的示数都发生变化。图b中三条图线分别表示了三个电压表示数随电流的变化的情况。其中
在如图a所示电路中,闭合电键
调整如图所示电路的可变电阻R的阻值,使电压表V的示数增大ΔU,在这个过程中[]A.通过R1的电流增加,增加量一定等于ΔU/R1B.R2两端的电压减小,减少量一定等于ΔUC.通过R2的
调整如图所示电路的可变电阻
如图所示的电路,闭合开关S,当滑动变阻器滑片p向右移动时,下列说法正确的是[]A.电流表读数变小,电压表读数变大B.小电泡L变暗C.电容器C上电荷量减小D.电源的总功率变小
如图所示的电路,闭合开关S,
直流电动机的内电阻r=2,与R=8的电阻串联接在线圈上,如图所示。已知线圈面积为m2,共100匝,线圈的电阻为2,线圈在的匀强磁场中绕O以转速n=600r/min匀速转动,在合上开关S后
直流电动机的内电阻r=2,与R
如图所示电路的电源内阻不可忽略,若调整可变电阻R的阻值,可使电压表V的示数增大△U(电压表为理想电表),在这个过程中[]A.通过R1的电流增加,增加量一定等于△U/R1B.R2两端的
如图所示电路的电源内阻不可