如图所示,直线形挡板p1p2p3与半径为r的圆弧形挡板p3p4p5平滑连接并安装在水平台面b1b2b3b4上,挡板与台面均固定不动.线圈c1c2c3的匝数为n,其端点c1、c3通过导线分别与电阻

◎ 题目

如图所示,直线形挡板p1p2p3与半径为r的圆弧形挡板p3p4p5平滑连接并安装在水平台面b1b2b3b4上,挡板与台面均固定不动.线圈c1c2c3的匝数为n,其端点c1、c3通过导线分别与电阻R1和平行板电容器相连,电容器两极板间的距离为d,电阻R1的阻值是线圈c1c2c3阻值的2倍,其余电阻不计,线圈c1c2c3内有一面积为S、方向垂直于线圈平面向上的匀强磁场,磁场的磁感应强度B随时间均匀增大.质量为m的小滑块带正电,电荷量始终保持为q,在水平台面上以初速度v0从p1位置出发,沿挡板运动并通过p5位置.若电容器两板间的电场为匀强电场,p1、p2在电场外,间距为L,其间小滑块与台面的动摩擦因数为μ,其余部分的摩擦不计,重力加速度为g.
求:
(1)小滑块通过p2位置时的速度大小.
(2)电容器两极板间电场强度的取值范围.
(3)经过时间t,磁感应强度变化量的取值范围.
魔方格

◎ 答案

(1)小滑块运动到位置p2时速度为v1,由动能定理有:
-umgL=
1
2
m
v21
-
1
2
m
v20

           v1=

v20
-2ugL

   (2)由题意可知,电场方向如图,若小滑块能通过位置p,则小滑块可沿挡板运动且通过位置p5,设小滑块在位置p的速度为v,受到的挡板的弹力为N,
        匀强电场的电场强度为E,由动能定理有:
魔方格

-umgL-2rEq=
1
2
m
v
-
1
2
m
v20

       当滑块在位置p时,由牛顿第二定律有:mg+N+Eq=m
v2
r

       由题意有:N≥0
       由以上三式可得:E≤
m(
v20
-2ugL)
5qr

       E的取值范围:0<E≤
m(
v20
-2ugL)
5qr
   ①
   (3)设线圈产生的电动势为E1,其电阻为R,平行板电容器两端的电压为U,t时间内磁感应强度的变化量为△B,得:
             U=Ed    ②
        由法拉第电磁感应定律得E1=n
△BS
t
     ③
        由全电路的欧姆定律得E1=I(R+2R)    ④
        U=2RI    ⑤
       由②③④⑤得:△B=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
在如图a所示电路中,闭合电键S,当滑动变阻器的滑动触头P向下滑动的过程中,四个理想电表的示数都发生变化。图b中三条图线分别表示了三个电压表示数随电流的变化的情况。其中
在如图a所示电路中,闭合电键
调整如图所示电路的可变电阻R的阻值,使电压表V的示数增大ΔU,在这个过程中[]A.通过R1的电流增加,增加量一定等于ΔU/R1B.R2两端的电压减小,减少量一定等于ΔUC.通过R2的
调整如图所示电路的可变电阻
如图所示的电路,闭合开关S,当滑动变阻器滑片p向右移动时,下列说法正确的是[]A.电流表读数变小,电压表读数变大B.小电泡L变暗C.电容器C上电荷量减小D.电源的总功率变小
如图所示的电路,闭合开关S,
直流电动机的内电阻r=2,与R=8的电阻串联接在线圈上,如图所示。已知线圈面积为m2,共100匝,线圈的电阻为2,线圈在的匀强磁场中绕O以转速n=600r/min匀速转动,在合上开关S后
直流电动机的内电阻r=2,与R
如图所示电路的电源内阻不可忽略,若调整可变电阻R的阻值,可使电压表V的示数增大△U(电压表为理想电表),在这个过程中[]A.通过R1的电流增加,增加量一定等于△U/R1B.R2两端的
如图所示电路的电源内阻不可