如图所示(俯视图),相距为2L的光滑平行金属导轨水平放置,导轨一部分处在以OO′为右边界的匀强磁场中,匀强磁场的磁感应强大小为B,方向垂直导轨平面向下,导轨右侧接有定值电

◎ 题目

如图所示(俯视图),相距为2L的光滑平行金属导轨水平放置,导轨一部分处在以OO′为右边界的匀强磁场中,匀强磁场的磁感应强大小为B,方向垂直导轨平面向下,导轨右侧接有定值电阻R,导轨电阻忽略不计.在距边界OO′为L处垂直导轨放置一质量为m、电阻不计的金属杆ab.求解以下问题:
(1)若金属杆ab固定在导轨上的初始位置.磁场的磁感应强度在时间t内由B均匀减小到零.求此过程中电阻R上产生的焦耳热Ql
(2)若磁场的磁感应强度不变,金属杆ab在恒力作用下由静止开始向右运动3L距离,其V--X的关系图象如图乙所示.求:
①金属杆ab刚要离开磁场时的加速度大小;
②此过程中电阻R上产生的焦耳热Q2
魔方格

◎ 答案

(1)磁场的磁感应强度在时间t内由B均匀减小到零,说明
△B
△t
=
B
t

根据法拉第电磁感应定律得出此过程中的感应电动势为:
E1=
△Φ
△t
=
2BL2
t
  ①
通过R的电流为I1=
E1
R
  ②
此过程中电阻R上产生的焦耳热为Q1=I12Rt  ③
联立求得Q1=
4B2L4
Rt

(2)①ab杆离起始位置的位移从L到3L的过程中,由动能定理可得:
F(3L-L)=
1
2
m(v22-v12)  ④
ab杆刚要离开磁场时,感应电动势     E2=2BLv1  ⑤
通过R的电流为I2=
E2
R

ab杆水平方向上受安培力F和恒力F作用,安培力为:
F=2BI2L  ⑦
联立⑤⑥⑦F=
4B2L2v1 
R
  ⑧
由牛顿第二定律可得:F-F=ma ⑨
联立④⑧⑨解得a=
v22-v12
4L
-
4B2L2v1
mR

②ab杆在磁场中由起始位置到发生位移L的过程中,由动能定理可得:
FL+W=
1
2
mv12-0
W=
1
2
mv12-FL  ⑩
根据功能关系知道克服安培力做功等于电路中产生的焦耳热,
所以联立④⑩解得     Q2=-W=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,条形磁铁放在水平桌面上,在其正中央的上方固定一根长直导线,导线与磁铁垂直,给导线通以垂直纸面向里的电流,用N表示磁铁对桌面的压力,用f表示桌面对磁铁的摩擦
如图所示,条形磁铁放在水平
如图,用一块磁铁接近发光的白炽灯泡,可以看到灯丝颤抖起来。关于这一现象,以下说法中正确的是[]A.这是一种电磁感应现象B.这是因为通电的灯丝受安培力作用的结果C.如果灯泡
如图,用一块磁铁接近发光的
如图所示,等腰直角三角形区域内分布有垂直于纸面向外的匀强磁场,它的底边在x轴上且长为L,高为L。纸面内一边长为L的正方形导线框沿x轴正方向以速度v匀速穿过匀强磁场区域,
如图所示,等腰直角三角形区
图中的D为置于电磁铁两极间的一段通电直导线,电流方向垂直于纸面向里。在开关S接通后,导线D所受磁场力的方向是[]A.向上B.向下C.向左D.向右
图中的D为置于电磁铁两极间的
如图所示,在同一水平面上的两金属导轨间距:ab=0.4m,处在竖直向下的匀强磁场中,磁感应强度B=2T.导体棒ab垂直导轨放置在金属导轨间,闭合开关,当通过导体ab的电流I=0.5A
如图所示,在同一水平面上的