如图a,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d2,一根导体棒ab以一定的初速度向右匀速运动,棒的右端存在一个垂直纸面向里,磁感应强度大小为B的

◎ 题目

如图a,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=
d
2
,一根导体棒ab以一定的初速度向右匀速运动,棒的右端存在一个垂直纸面向里,磁感应强度大小为B的匀强磁场.棒进入磁场的同时,粒子源P释放一个初速度为零的带电粒子,已知带电粒子质量为m,电荷量为q,粒子能从N板加速到M板,并从M板上的一个小孔穿出.在板的上方,有一个环形区域内存在磁感应强度大小也为B,垂直纸面向外的匀强磁场.已知外圆半径为2d,内圆半径为d,两圆的圆心与小孔重合(粒子重力不计).

魔方格

(1)判断带电粒子的正负,并求当ab棒的速度为v0时,粒子到达M板的速度v;
(2)若要求粒子不能从外圆边界飞出,则ab棒运动速度v0的取值范围是多少?
(3)若棒ab的速度
v′0
=
qBd
m
,为使粒子不从外圆飞出,可通过控制导轨区域磁场的宽度S(如图b),则该磁场宽度S应控制在多少范围内?

◎ 答案


魔方格
(1)根据右手定则知,a端为正极,故带电粒子必须带负电
ab棒切割磁感线,产生的电动势U=B
d
2
v0

对于粒子,由动能定理qU=
1
2
mv2
-0 
得粒子射出电容器的速度为 v=

qBdv0
m

(2)要使粒子不从外边界飞出,则粒子最大半径时的轨迹与外圆相切,
由几何关系有:(2d-r)2=r2+d2
得 r=
3
4
d

由洛仑兹力等于向心力,有:qvB=m
v20
r

联立得 v0=
9qBd
16m
    
故ab棒的速度范围:v0
9qBd
16m

(3)因为
v′0
=
qBd
m
>vm,故如果让粒子在MN间一直加速,则必然会从外圆飞出,
所以只能让粒子在MN间只加速至速度为 v=

qBdv0
m
=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性