如图所示,在直角坐标系xoy第一象限中,有一半径为R的半圆,该半圆的直径是OD,圆心为C,半圆区域内有垂直纸面向外的匀强磁场;在y轴的左侧有平行于y轴的匀强电场,场强大小
◎ 题目
如图所示,在直角坐标系xoy第一象限中,有一半径为R的半圆,该半圆的直径是OD,圆心为C,半圆区域内有垂直纸面向外的匀强磁场;在y轴的左侧有平行于y轴的匀强电场,场强大小为E,在C处有一带负电的粒子(质量为m、电荷量为q),以初速度v0垂直x轴进入磁场,经偏转后射出磁场,又经过一段时间后从y轴上的P点垂直进入电场,若OP=0.6R(粒子重力不计).求: (1)磁感应强度为B; (2)粒子进入电场后到达x轴上Q点时的速率及坐标; (3)粒子从C点出发到达x轴上Q点所用的总时间. |
◎ 答案
(1)由题意可知带电粒子在磁场中的运动半径r=0.6R 由牛顿第二定律得:qv0B=
联立解得:B=
(2)带电粒子在电场中做类平抛运动 0.6R=
OQ=v0t 联立解得:OQ=v0
即Q点的坐标为(-v0
设粒子在Q点的速度为v,由动能定理得: qE?op=
解得:v=
(3)带电粒子在磁场中的运动时间t1=
|