图(甲)所示,一对金属板M和N平行、竖直放置,M、N的中心分别有小孔P、Q,PQ连线垂直金属板.N板右侧有一半径为r的圆形有界的匀强磁场,其圆心O在PQ的延长线上,磁场方向垂直于

◎ 题目

图(甲)所示,一对金属板M和N平行、竖直放置,M、N的中心分别有小孔P、Q,PQ连线垂直金属板.N板右侧有一半径为r的圆形有界的匀强磁场,其圆心O在PQ的延长线上,磁场方向垂直于纸面向外,磁感应强度大小为B.置于P孔附近的粒子源连续不断地沿PQ方向放射出质量为m、电量为+q的带电粒子(带电粒子所受的重力、初速度及粒子间的相互作用力可忽略),从某一时刻开始,在板M、N间加上如图(乙)所示的交变电压,其周期为T、电压为U,t=0时M板电势高于N板电势.已知带电粒子在M、N两板间一直做加速运动的时间小于T/2,并且只有在每一个周期的前T/4时间内放出的带电粒子才能从小孔Q中射出,求:
(1)带电粒子从小孔Q中射出的最大速度;
(2)M、N两板间的距离;
(3)在沿圆形磁场的边界上,有带电粒子射出的最大弧长.

魔方格

◎ 答案


魔方格
(1)在M、N电场间处于一直加速的粒子从小孔Q中射出的速度最大,设从最大速度为vm
根据动能定理得 qU=
1
2
m
v2m

解得:vm=

2qU
m
  
(2)设M、N两板间距离为d,则两板间的电场强度大小 E=
U
d

设粒子运动的加速度为a,根据牛顿第二定律得 qE=ma
解得:a=
qU
md

每一个周期的第一个
T
4
时刻放出的带电粒子刚好能从小孔Q中射出,它加速和减速各经历
T
4

由d=
1
2
a(
T
4
)2×2

解得:d=
T
4

qU
m

(3)每一个周期的前
T
4
时间内放出的带电粒子才能从小孔Q中射出,其中射出最早的粒子速度最大,越晚射出的粒子速度越小.粒子进入磁场,其中速度越小者运动半径越小,射出点离射入点越近,偏转角度越大(越接近π).最早射入者速度最大,运动半径最大,偏转角度最小,射出点与入射点所夹弧长最大.
设带电粒子以最大速度射入时在磁场中的运动半径为R,偏转角为θ,由牛顿第二定律和几何关系得
 Bqv=m
v2
R

 tan
θ
2
=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性