如图,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC变射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只

◎ 题目

如图,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC变射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A点射出磁场.不计重力,求:
(1)此匀强磁场区域中磁感应强度的方向和大小;
(2)此匀强磁场区域的最小面积.
魔方格

◎ 答案

(1)设匀强磁场的磁感应强度的大小为B.令圆弧
















AEC
是自C点垂直于BC入射的电子在磁场中的运行轨道.电子所受到的磁场的作用力f=ev0B
应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧
















AEC
的圆心在CB边或其延长线上.依题意,圆心在A、C连线的中垂线上,故B 点即为圆心,圆半径为a按照牛顿定律有f=m
v20
2

联立①②式得B=
mv0
ea

(2)由(1)中决定的磁感应强度的方向和大小,可知自C点垂直于BC入射电子在A点沿DA方向射出,且自BC边上其它点垂直于入射的电子的运动轨道只能在BAEC区域中.因而,圆弧
















AEC
是所求的最小磁场区域的一个边界.
为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为θ(不妨设0≤θ<
π
2
)的情形.该电子的运动轨迹qpA如图所示.

魔方格
图中,圆
















AP
的圆心为O,pq垂直于BC边,由③式知,圆弧
















AP
的半径仍为a,在D为原点、DC为x轴,AD为y轴的坐标系中,P点的坐标(x,y)为
x=asinθ④
y=-[a-(z-acosθ)]=-acosθ⑤

这意味着,在范围0≤θ≤
π
2
内,p点形成以D为圆心、a为半径的四分之一圆周
















AFC
,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.
因此,所求的最小匀强磁场区域时分别以B和D为圆心、a为半径的两个四分之一圆周
















AEC
















AFC
所围成的,其面积为S=2(
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性