如图甲所示,两平行金厲板A,B的板长L=0.2m,板间距d=0.2m.两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应.在金属板上侧有方向垂直于纸

◎ 题目

如图甲所示,两平行金厲板A,B的板长L=0.2m,板间距d=0.2m.两金属板 间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应.在金 属板上侧有方向垂直于纸面向里的匀强磁场,其上下宽度D=0.4m,左右范围足够大,边界MN和PQ均与金属板垂直,匀强磁场的磁感应强度B=1x 1O-2T.在极板下侧中点O处有一粒子源,从t=0时起不断地沿着00'发射比荷
q
m
=1x108C/kg、初速度v0=2x 105m/s的带正电粒子.忽略粒子重力、粒子间相互作用以及粒子在极板间飞行时极 板间的电压变化.sin30=0.5,sin37=0.6,sin45=

2
2

(1)求粒子进入磁场时的最大速率
(2)对于在磁场中飞行时间最长的粒子,求出其在磁场中飞行的时间以及由0点出发 的可能时刻.
(3)对于所有能从MN边界飞出磁场的粒子,试求这些粒子在MN边界上出射区域的宽度.

魔方格

◎ 答案

(1)设粒子恰从金属板边缘飞出时,AB两板间的电压为U0,由运动学公式及牛顿第二定律得:
 
1
2
d=
1
2
a1t2
 
  qE1=ma1
  E1=
U0
d

  t=
L
v0

联立以上各式,解得,U0=400V<500V
设粒子进入磁场时的最大速率为vm,由动能定理得
 q?
1
2
U0
=
1
2
m
v2m
-
1
2
m
v20

解得,vm=2

2
×105m/s
(2)分析可知,在磁场中飞行时间最长的粒子,其运动轨迹应在电场中向B板偏转,在磁场中恰好与上边界相切,如图所示,设粒子进入磁场时,速度v与OO′成θ角,在磁场中运动时间为
魔方格
tm,由牛顿第二定律、平行四边形定则、几何关系及运动学公式得
   qvB=m
v2
R

   v=
v0
cosθ

  R(1+sinθ)=D
  T=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性