一质量为m、带电量为+q的粒子以速度v0从O点沿y轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°

◎ 题目

一质量为m、带电量为+q的粒子以速度v0从O点沿y轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强E,方向沿x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方c点,如图所示,已知 b到O的距离为L,粒子的重力不计,试求:
(1)磁感应强度B
(2)圆形匀强磁场区域的最小面积;
(3)c点到b点的距离.
魔方格

◎ 答案


魔方格
(1)粒子在磁场中受洛仑兹力作用,作匀速圆周运动,设其半径为R,qvB=m
v2
R

据此并由题意知,粒子在磁场中的轨迹的圆心C必在x轴上,且b点在磁场区之外.过b沿速度方向作延长线,它与y轴相交于d点.作圆弧过O点与y轴相切,并且与bd相切,切点a即粒子离开磁场区的地点.这样也求得圆弧轨迹的圆心C,如图所示.
由图中几何关系得L=3R                    
由①、②求得B=
3mv
qL

(2)要使磁场的区域有最小面积,则Oa-应为磁场区域的直径,由几何关系知:
r
R
=cos30°

由②、④得    r=

3
L
6

∴匀强磁场的最小面积为:Sminr2=
πL2
12

(3)带电粒子电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动的合成知识有:
    s?sin30°=v0t   
    s?cos30°=at2/2 
     而a=
qE
m

联立解得:s=
4

3
m
v20
Eq

答:(1)磁感应强度B=
3mv
qL

(2)圆形匀强磁场区域的最小面积Smin=
πL2
12

(3)c点到b点的距离s=
4

3
m
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性