如图所示,在x轴上方平面内存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一离子源,可以在平行于纸面内向x轴上方(包括x轴)沿各个方向发射速率在0到υm之

◎ 题目

如图所示,在x轴上方平面内存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B.坐标原点O处有一离子源,可以在平行于纸面内向x轴上方(包括x轴)沿各个方向发射速率在0到υm之间、质量为m、电量为q的负离子.不计离子的重力和离子之间的相互作用力,试分析:
(1)若在t=0时刻发射的各种速率的离子仅沿+x方向,写出经过t=
πn
2qB
时这些离子所在位置的坐标y与x的关系式和范围.
(2)若在x轴的上方距离x轴d=
8mmv
5qB
处放一足够长的屏,屏与x轴平行,离子以最大速度υm向x轴上方各个方向发射,求这些离子打在屏上的范围.
(3)若从t=0时刻开始向x轴上方各个方向发射各种速率的离子,求从t=0到t=
πn
2qB
时间内所有离子可能到达过的位置所组成区域的最大面积.
魔方格

◎ 答案

(1)离子进入磁场中做圆周运动的半径为R,由牛顿第二定律得:
  qvB=m
v2
R

解得最大半径Rm=
mv
qB

离子在磁场中运动的周期为T,则
T=
2πR
v
=
2πm
qB

因为t=
1
4
T
,所以t时刻这些离子刚好转过90°角,设某一离子在此时刻的坐标为(x,y),则有
y=x,且0≤x≤
mv
qB

(2)离子以最大速度υm向x轴正方向发射时,将到达屏的最右端.  
L1=

R2m
-(d-Rm)2
=
4mv
5qB

离子与屏刚好相切时,将到达屏的最左端.
L2=

R2m
-(d-Rm)2
=
4mv
5qB

离子打在屏上的范围为-
4mv
5qB
≤x≤
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性