如图所示,两互相平行的水平金属导轨MN、PQ放在竖直平面内,相距为L=0.4cm,左端接平行板电容器,板间距离为d=0.2m,右端接滑动变阻器R(R的最大阻值为Ω),整个空间有水平匀

◎ 题目

如图所示,两互相平行的水平金属导轨MN、PQ放在竖直平面内,相距为L=0.4cm,左端接平行板电容器,板间距离为d=0.2m,右端接滑动变阻器R(R的最大阻值为Ω),整个空间有水平匀强磁场,磁感应强度为B=10T,方向垂直于导轨所在平面.导体棒CD与导轨接触良好,棒的电阻为r=1Ω,其它电阻及摩擦均不计,现对导体棒施加与导轨平行的大小为F=2N的恒力作用,使棒从静止开始运动,取g=10m/s2.求:
(1)当滑动变阻器R接入电路的阻值最大时,拉力的最大功率是多大?
(2)当滑动触头在滑动变阻器中点且导体棒处于稳定状态时,一带电小球从平行板电容器左侧沿两极板的正中间射入,在两极板间恰好做匀速直线运动;当滑动触头在滑动变阻器最下端且导体棒处于稳定状态时,该带电小球以同样的方式和速度入射,在两极间恰能做匀速圆周运动,求圆周的半径是多大?
魔方格

◎ 答案

(1)当棒达到匀速运动时,金属棒受到的安培力:
FB=BIL=B
BLv
R+r
L=
B2L2v
R+r

由平衡条件得:F=FB,即:F=
B2L2v
R+r

导体棒的速度v=
F(R+r)
B2L2

拉力功率P=Fv=
F2(R+r)
B2L2

可知,回路的总电阻越大时,拉力功率越大,当R=2Ω时,拉力功率最大,最大功率为Pm=0.75W;
(2)当触头滑到中点即R=1Ω时
棒匀速运动的速度v1=
F(R+r)
B2L2
=0.25m/s
导体棒产生的感应电动势E1=BLv1=10×0.4×0.25=1V
电容器两极板间电压U1=
E1R
R+r
=0.5V,
魔方格

由于棒在平行板间做匀速直线运动,则小球必带正电
此时小球受力情况如图所示,设小球的入射速度为v0
由平衡条件知:F+f=G 即 q
U1
d
+qv0B=mg…①
当滑头滑至下端即R=2Ω时,棒的速度v2=
F(R+r)
B2L2
=
3
8
m/s
导体棒产生的感应电动势 E2=BLv2=1.5V
电容器两极板间的电压U2=
E2R
R+r
=1V
由于小球在平行板间做匀速圆周运动
电场力与重力平衡,于是:q
U2
d
=mg…②
代入数值,由①②解得:v0=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性