如图所示,在水平地面上方附近有一范围足够大的互相正交的匀强电场和匀强磁场区域.磁场的磁感应强度为B,方向水平并垂直纸面向里.一质量为m、带电荷量为q的带正电微粒在此区

◎ 题目

如图所示,在水平地面上方附近有一范围足够大的互相正交的匀强电场和匀强磁场区域.磁场的磁感应强度为B,方向水平并垂直纸面向里.一质量为m、带电荷量为q的带正电微粒在此区域内沿竖直平面(垂直于磁场方向的平面)做速度大小为v的匀速圆周运动,重力加速度为g.
(1)求此区域内电场强度的大小和方向
(2)若某时刻微粒在场中运动到P点时,速度与水平方向的夹角为60°,且已知P点与水平地面间的距离等于其做圆周运动的半径.求该微粒运动到最高点时与水平地面间的距离.
(3)当带电微粒运动至最高点时,将电场强度的大小变为原来的
1
2
(不计电场变化对原磁场的影响),且带电微粒能落至地面,求带电微粒落至地面时的速度大小.

◎ 答案

(1)由于带电微粒可以在电场、磁场和重力场共存的区域内沿竖直平面做匀速圆周运动,表明带电微粒所受的电场力和重力大小相等、方向相反.
因此电场强度的方向竖直向上.
设电场强度为E,则有mg=qE,即E=
mg
q

(2)设带电微粒做匀速圆周运动的轨道半径为R,根据牛顿第二定律和洛仑兹力公式有qvB=m
v2
R
,解得,R=
mv
qB

依题意可画出带电微粒做匀速圆周运动的轨迹,由如图所示的几何关系可知,该微粒运动至最高点时与水平地面间的距离为:hm=
5
2
R=
5mv
2qB

(3)将电场强度的大小变为原来的
1
2
,则电场力变为原来的
1
2
,即F=
1
2
mg.
带电微粒运动过程中,洛仑兹力不做功,所以在它从最高点运动至地面的过程中,只有重力和电场力做功.设带电微粒落地时的速度大小为vt,根据动能定理有
mghm-Fhm=
1
2
mvt2-
1
2
mv2
解得:vt=

v2+
5mgv
2qB

答:(1)电场强度的方向竖直向上,大小为E=
mg
q

(2)该微粒运动到最高点时与水平地面间的距离是
5mv
2qB

(3)带电微粒落至地面时的速度大小是

v2+
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性