如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B.圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,

◎ 题目

如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B.圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点.已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力.求:
(1)质子刚进入电场时的速度方向和大小;
(2)OC间的距离;
(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少.

◎ 答案

(1)根据题意可知,质子的运动轨迹的半径与圆磁场半径相同,
由牛顿第二定律,则有:qvB=m
v2
r

得:v=
qBr
m

方向沿x轴正方向;
(2)质子在电场中做类平抛运动,
则质子电场中运动时间:r=
1
2
at2

由牛顿第二定律qE=ma
t=

2mr
qE

由题意可知x1=ON=r
电场中x2=NC=vt
OC间的距离为x=x1+x2=r+
qBr
m

2mr
qE

(3)竖直方向的速度vy=at
设质子合速度为v′
质子合速度与x轴正向夹角的正弦值sinθ=
vy
v′

x3=CD=2Rsinθ
运动半径:R=
mv′
qB

x3=CD=2
mv′
qB
vy
v′
=
2E
B

2mr
qE

答:(1)质子刚进入电场时的速度方向沿x轴正方向和大小v=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性