如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B.圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,
◎ 题目
如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B.圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点.已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力.求: (1)质子刚进入电场时的速度方向和大小; (2)OC间的距离; (3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少. |
◎ 答案
(1)根据题意可知,质子的运动轨迹的半径与圆磁场半径相同, 由牛顿第二定律,则有:qvB=m
得:v=
方向沿x轴正方向; (2)质子在电场中做类平抛运动, 则质子电场中运动时间:r=
由牛顿第二定律qE=ma t=
由题意可知x1=ON=r 电场中x2=NC=vt OC间的距离为x=x1+x2=r+
(3)竖直方向的速度vy=at 设质子合速度为v′ 质子合速度与x轴正向夹角的正弦值sinθ=
x3=CD=2Rsinθ 运动半径:R=
x3=CD=2
答:(1)质子刚进入电场时的速度方向沿x轴正方向和大小v= |