如图所示,电子自静止开始经M、N板间的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,两板间的电压为U,电子离开磁场时的位置P偏离入射方向的距离为L,在距离磁场

◎ 题目

如图所示,电子自静止开始经M、N板间的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,两板间的电压为U,电子离开磁场时的位置P偏离入射方向的距离为L,在距离磁场边界S处有屏幕N,电子射出磁场后打在屏上.(已知电子的质量为m,电荷量为e)求:

(1)电子进入磁场的速度大小
(2)匀强磁场的磁感应强度
(3)电子打到屏幕上的点距中心O点的距离是多少?

◎ 答案

(1)设电子在M、N两板间经电场加速后获得的速度为v,由动能定理得:
eU=
1
2
mv2
,得 v=

2eU
m

(2)电子进入磁场后做匀速圆周运动,设其半径为r,则根据洛伦兹力提供向心力,得:
evB=m
v2
r
②…
由几何关系得:r2=(r-L)2+d2③…
联立求解①②③式得:B=
2L
(L2+d2)

2mU
e

(3)设电子在磁场中轨迹所对的圆心角为α,则电子经过磁场后速度的偏向角也为α,如图.由几何知识得:
tanα=
d
r-L

根据几何知识得:电子打到屏幕上的点距中心O点的距离是 ON=L+stanα ⑥
联立③⑤⑥得:ON=L+
2Lds
d2-L2

答:
(1)电子进入磁场的速度大小是

2eU
m

(2)匀强磁场的磁感应强度是
2L
(L2+d2)

2mU
e

(3)电子打到屏幕上的点距中心O点的距离是L+
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性