如图甲所示,x方向足够长的两个条形区域,其y方向的宽度分别为l1=0.1m和l2=0.2m,两区域分别分布着磁感应强度为B1和B2的磁场,磁场方与xy平面垂直向里,磁感应强度B2=0.1

◎ 题目

如图甲所示,x方向足够长的两个条形区域,其y方向的宽度分别为l1=0.1m和l2=0.2m,两区域分别分布着磁感应强度为B1和B2的磁场,磁场方与xy平面垂直向里,磁感应强度B2=0.1T,B1随时间变化的图象如图乙所示.现有大量粒子从坐标原点O以恒定速度v=2×106m/s不断沿y轴正方向射入磁场,已知带电粒子的电量q=-2×10-8C,质量m=4×10-16kg,不考虑磁场变化产生的电场及带电粒子的重力.求:
(1)在图乙中0~1s内,哪段时间从O发射的粒子能进入磁感应强度B2的磁场?
(2)带电粒子打在磁场上边界MN上的x坐标范围是多少?
(3)在MN以下整个磁场区域内,单个带电粒子运动的最长时间和最短时间分别是多少?

◎ 答案

(1)粒子在B1磁场中运动时间极短,可视这极短时间内的磁场为恒定的匀强磁场,带电粒子在该磁场中做匀速圆周运动,根据牛顿第二定律,有
qvB1=m
v2
r
,当r=l1时,B1=
mv
ql1
,代入数据得
B1=0.4T.
由右图可知,当B1=0.4T时,
t=t′=0.8s
因此,0~0.8s时间内B1的值小于0.4T,粒子运动半径大于l1,这段时间从O发射的粒子将进入磁感应强度B2的区域.
(2)设粒子在B2磁场中运动的半径为r2,当B1=0时,粒子打在MN上的A1点为最左边的点.根据牛顿运动定律得
qvB2=m
v2
r2

代入数据解得r2=
mv
qB2
=0.4m

如右图几何关系可知sinθ1=
l2
r2
=0.5

A1点的横坐标为
x1=r2-r2cosθ1=(0.4-0.2

3
)
m
下图中,若A2为最右边点,则A2为轨迹与边界MN的切点.过C1点作速度方向的垂线,O1为带电粒子在磁场B1中运动的圆心,O2为在磁场B2中运动的圆心.由几何知识可得:
O2C2=r2-(l1+l2)=0.1m
sinθ2=
l1+O2C2
r2
=0.5
,即θ2=30°,
由此可得A2点的横坐标x2为:x2=r1(1-cosθ2)+r2cosθ2
由几何知识可知此时r1=0.2m
解得:x2=(0.2+0.3

3
)m

(3)粒子轨迹与MN相切时,粒子在磁场中运动轨迹最长,时间也最长.由于粒子在磁场中做匀速圆周运动,且轨迹左右对称,则粒子在磁场B1中的运动时间为t1=2×
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性