如图,在0≤x≤d的空间,存在垂直xOy平面的匀强磁场,方向垂直xOy平面向里.y轴上P点有一小孔,可以向y轴右侧垂直于磁场方向不断发射速率均为v、与y轴所成夹角θ可在0~1800范围内

◎ 题目

如图,在0≤x≤d的空间,存在垂直xOy平面的匀强磁场,方向垂直xOy平面向里.y轴上P点有一小孔,可以向y轴右侧垂直于磁场方向不断发射速率均为v、与y轴所成夹角θ可在0~1800范围内变化的带负电的粒子.已知θ=45°时,粒子恰好从磁场右边界与P点等高的Q点射出磁场,不计重力及粒子间的相互作用.求:
(1)磁场的磁感应强度;
(2)若θ=30°,粒子射出磁场时与磁场边界的夹角(可用三角函数、根式表示);
(3)能够从磁场右边界射出的粒子在磁场中经过的区域的面积(可用根式表示).

◎ 答案

(1)当θ=45°时,粒子恰好从磁场右边界与P点等高的Q点射出磁场,
由几何关系可得,d=Rcos45°
解得:R=

2
2
d

粒子仅在洛伦兹力作用下,则有:Bqv=m
v2
R

所以,B=
mv
Rq
=

2
mv
qd

(2)根据半径的大小R=

2
2
d
与入射角30°,可画出右图,
△AMd中,∠MdA=60°,AM=R,Ad=
d
sin60°
-R=
4

3
-3

2
6
d

则三角形正弦定理可得,
Ad
sinα
=
AM
sin60°

设粒子射出磁场时与磁场边界的夹角为β,则有cosβ=sinα=
Ad
AM
sin60°
=
 1/3    1 2 3 下一页 尾页
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性