如图所示,直角坐标系的ox轴水平,oy轴竖直;M点坐标为(-0.3m,0)、N点坐标为(-0.2m,0);在-0.3m≤X≤-0.2m的长条形范围内存在竖直方向的匀强电场E0;在X≥0的范围内存在竖

◎ 题目

如图所示,直角坐标系的ox轴水平,oy轴竖直;M点坐标为(-0.3m,0)、N点坐标为(-0.2m,0);在-0.3m≤X≤-0.2m的长条形范围内存在竖直方向的匀强电场E0;在X≥0的范围内存在竖直向上的匀强电场,场强为E=20N/C;在第一象限的某处有一圆形的匀强磁场区,磁场方向垂直纸面向外,磁感应强度B=2.5T.有一带电量q=+1.0×10-4C、质量m=2×10-4kg的微粒以v0=0.5m/s的速度从M点沿着x轴正方向飞入电场,恰好垂直经过y轴上的P点(图中未画出,yP>0),而后微粒经过第一象限某处的圆形磁场区,击中x轴上的Q点,速度方向与x轴正方向夹角为60°.g取10m/s2.求:
(1)场强E0的大小和方向;
(2)P点的坐标及圆形磁场区的最小半径r;
(3)微粒从进入最小圆形磁场区到击中Q点的运动时间(可以用根号及π等表示)

◎ 答案

(1)E0方向向上---①
微粒穿过MN、NO区的时间分别为t1、t2,则
t1=
MN
v0
-------②
t2=
NO
v0
-------③
过MN区加速度a竖直向上,速度变化量大小为△v:a=
△v
t1
---④
过NO区:g=
△v
t2
-------⑤
且qE0-mg=ma------⑥
由①~⑥得E0=60N/C-------⑦
(2)过N界偏移y1=
1
2
at12
------⑧
y2=
1
2
gt22
----⑨
则yP=y1+y2=1.2m----⑩
故P点的坐标为:(0,1.2m)
由qE=mg------(11)
得微粒飞入磁场做速度为v0的匀速圆周运动,设轨道半径为R,
qv0B=m
v02
R
-----(12)
R=
mv0
qB
=0.4m
--------------(13)
由几何关系得最小磁场区半径r=
AC
2
=
R
2
=0.2
m----(14)
(3)磁场中运动时间t3=
1
6
T=
πm
3qB
---(15)
C~Q时间t4=
CQ
v0
---(16)
由几何关系得CQ=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性