如图甲所示为汤姆生在1897年测量阴极射线(电子)的比荷时所用实验装置的示意图.K为阴极,A1和A2为连接在一起的中心空透的阳极,电子从阴极发出后被电场加速,只有运动方向与A

◎ 题目

如图甲所示为汤姆生在1897年测量阴极射线(电子)的比荷时所用实验装置的示意图.K为阴极,A1和A2为连接在一起的中心空透的阳极,电子从阴极发出后被电场加速,只有运动方向与A1和A2的狭缝方向相同的电子才能通过,电子被加速后沿00’方向垂直进人方向互相垂直的电场、磁场的叠加区域.磁场方向垂直纸面向里,电场极板水平放置,电子在电场力和磁场力的共同作用下发生偏转.已知圆形磁场的半径为r,圆心为C.
某校物理实验小组的同学们利用该装置,进行了以下探究测量:
第一步:调节两种场的强弱.当电场强度的大小为E,磁感应强度的大小为B时,使得电子恰好能够在复合场区域内沿直线运动.
第二步:撤去电场,保持磁场和电子的速度不变,使电子只在磁场力的作用下发生偏转,打在荧屏上出现一个亮点P,通过推算得到电子的偏转角为α(CP与OO′下之间的夹角).
求:(1)电子在复合场中沿直线向右飞行的速度;
(2)电子的比荷
e
m

(3)有位同学提出了该装置的改造方案,把球形荧屏改成平面荧屏,并画出了如图乙的示意图.已知电场平行金属板长度为L1,金属板右则到荧屏垂直距离为L2.实验方案的第一步不变,可求出电子在复合场中沿直线向右飞行的速度.第二步撤去磁场,保持电场和电子的速度不变,使电子只在电场力的作用下发生偏转,打在荧屏上出现一个亮点P,通过屏上刻度可直接读出电子偏离屏中心点的距离
.
O/Q
=y
.同样可求出电子的比荷
e
m
.请你判断这一方案是否可行?并说明相应的理由.

◎ 答案

(1)电子在复合场中二力平衡,即:
eE=evB①
得:v=
E
B

(2)如图所示:其中R为电子在磁场中做圆(弧)运动的圆轨道半径.
所以:θ=
π
2
-
α
2

tanθ=
r
R

又因:evB=m
v2
R

联解以上②③④⑤式得:
e
m
=
E
rB2
tan
α
2

(3)此方案可行,原因如下.
如图设电子在电场中偏转的侧向位移为y′,
y/
y
=
L1
2
L1
2
+L2

电子通过水平电场的时间为:t=
L1
v

电子在电场中偏转的加速度为:a=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性