如图所示,光滑轨道ABCD固定在竖直平面内,由直轨道AB与圆弧轨道BCD平滑相切对接组成.圆弧的圆心为O点,半径大小为R,OB与竖直方向OC夹角θ=37°,D点与圆心O点等高;竖直且过

◎ 题目

如图所示,光滑轨道ABCD固定在竖直平面内,由直轨道AB与圆弧轨道BCD平滑相切对接组成.圆弧的圆心为O点,半径大小为R,OB与竖直方向OC夹角θ=37°,D点与圆心O点等高;竖直且过B点的直线PQ右侧空间内,被水平且过O点、D点的直线MN分为下区域Ⅰ和上区域Ⅱ,下区域Ⅰ内存在水平向右的匀强电场,场强为
E1
,上区域Ⅱ内存在垂直纸面向里的匀强电场,场强为
E2
.质量为m,电荷量为q的带正电小滑块(可视为质点),从直轨道上A点由静止开始下滑,A点离轨道最低点C的高度为2R,已知
E1
=
mg
q
E2
=
3mg
4q
,求:
(1)小滑块滑到C点时对轨道压力大小;
(2)小滑块离开D点后,运动到与D点等高时,距D点的水平距离;
(3)小滑块离开D点后,在区域Ⅱ运动过程中,经多长时间,它所受合外力的瞬时功率最小.

◎ 答案

(1)小滑块在C点:FC-mg=m
vc2
R

小滑块A→C:mg?2r+qE1?Rsinθ=
1
2
mvc2
已知qE1=mg,解得:Fc=6.2mg
由牛顿第三定律FC′=6.2mg
(2)小滑块从A→D:
mg?r+qE1?R(1+sinθ)=
1
2
mvD2
解得:vD=

5.2gR

小滑块离开D点后,竖直方向做竖直上抛运动,垂直直面向里的水平方向做初速度为0的匀加速直线运动
竖直方向:t=
2vD
g
=2

5.2R
g

水平方向:a=
qE2
m
=
3
4
g
s=
1
2
at2
解得:s=7.8R
(3)当qE2与mg的合力方向与v方向垂直时,合外力的瞬时功率最小,等于零,此时v方向与水平夹角为37°
设经过的时间为t,
vx=at=
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性