有一种“双聚焦分析器”质谱仪,工作原理如图所示.加速电场的电压为U,静电分析器中有辐向会聚电场,即与圆心O1等距各点的电场强度大小相同,方向沿径向指向圆心O1;磁分析器中

◎ 题目

有一种“双聚焦分析器”质谱仪,工作原理如图所示.加速电场的电压为U,静电分析器中有辐向会聚电场,即与圆心O1等距各点的电场强度大小相同,方向沿径向指向圆心O1;磁分析器中以O2为圆心、圆心角为90°的扇形区域内,分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行.由离子源发出一个质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后,从M点沿垂直于该点的电场方向进入静电分析器,在静电分析器中,离子沿半径为R的四分之一圆弧轨道做匀速圆周运动,并从N点射出静电分析器.而后离子由P点沿着既垂直于磁分析器的左边界,又垂直于磁场方向射入磁分析器中,最后离子沿垂直于磁分析器下边界的方向从Q点射出,并进入收集器.测量出Q点与圆心O2的距离为d,位于Q点正下方的收集器入口离Q点的距离为
d
2
.(题中的U、m、q、R、d都为已知量)
(1)求静电分析器中离子运动轨迹处电场强度E的大小;
(2)求磁分析器中磁感应强度B的大小;
(3)现将离子换成质量为4m,电荷量仍为q的另一种正离子,其它条件不变.磁分析器空间足够大,离子不会从圆弧边界射出,收集器的位置可以沿水平方向左右移动,要使此时射出磁分析器的离子仍能进入收集器,求收集器水平移动的距离.

◎ 答案

(1)设离子进入静电分析器时的速度为v,离子在加速电场中加速的过程中,
由动能定理得:qU=
1
2
mv2

离子在静电分析器中做匀速圆周运动,
根据牛顿第二定律有:qE=
mv2
R

联立两式,解得:E=
2U
R

(2)离子在磁分析器中做匀速圆周运动,
由牛顿第二定律有:qvB=
mv2
r

由题意可知,圆周运动的轨道半径为:r=d
故解得:B=
1
d

2mU
q
,由左手定则判断得,磁场方向垂直纸面向外.
(3)另一正离子经电场加速后的速度v′=
v
2

可得磁场中运动的半径:r′=2d
故水平向右移动的距离为:

3
d+
d
2
cot60°-d
=(
7

3
6
-1
)d
答:(1)静电分析器中离子运动轨迹处电场强度E的大小为
2U
R
;(2)磁分析器中磁感应强度B的大小为
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a。假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重
如图甲所示,直角坐标系中直
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一、四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴向右接
如图甲所示,建立Oxy坐标系,
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点a(0,L)。一个质量为m、电荷量为e的电子从a点以初速度v0平行于轴正方向射入磁场,
如图所示,在平面直角坐标系
如图所示,两平行金属板A,B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板
如图所示,两平行金属板A,B
静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44:1,如图所示,则[]A.α粒子与反冲粒子的动量
静止在匀强磁场中的某放射性