如图1所示,M、N为竖直放置的平行金属板,两板间所加电压为U0,S1、S2为板上正对的小孔.金属板P和Q水平放置在N板右侧,关于小孔S1、S2所在直线对称,两板的长度和两板间的距
◎ 题目
如图1所示,M、N为竖直放置的平行金属板,两板间所加电压为U0,S1、S2为板上正对的小孔.金属板P和Q水平放置在N板右侧,关于小孔S1、S2所在直线对称,两板的长度和两板间的距离均为l;距金属板P和Q右边缘l处有一荧光屏,荧光屏垂直于金属板P和Q;取屏上与S1、S2共线的O点为原点,向上为正方向建立x轴.M板左侧电子枪发射出的电子经小孔S1进入M、N两板间.电子的质量为m,电荷量为e,初速度可以忽略.不计电子重力和电子之间的相互作用. (1)求电子到达小孔S2时的速度大小v; (2)若板P、Q间只存在垂直于纸面向外的匀强磁场,电子刚好经过P板的右边缘后,打在荧光屏上.求磁场的磁感应强度大小B和电子打在荧光屏上的位置坐标x; (3)若金属板P和Q间只存在电场,P、Q两板间电压u随时间t的变化关系如图2所示,单位时间内从小孔S1进入的电子个数为N.电子打在荧光屏上形成一条亮线.忽略电场变化产生的磁场;可以认为每个电子在板P和Q间运动过程中,两板间的电压恒定. a.试分析在一个周期(即2t0时间)内单位长度亮线上的电子个数是否相同. b.若在一个周期内单位长度亮线上的电子个数相同,求2t0时间内打到单位长度亮线上的电子个数n;若不相同,试通过计算说明电子在荧光屏上的分布规律. |
◎ 答案
(1)根据动能定理eU0=
(2)电子在磁场中做匀速圆周运动,设圆运动半径为 R, 在磁场中运动轨迹如图1,由几何关系R2=l2+(R-
解得:R=
根据牛顿第二定律:Bev=m
解得:B=
设圆弧所对圆心为α,满足:sinα=
由此可知:tanα=
电子离开磁场后做匀速运动,满足几何关系:
通过上式解得坐标x= |