如图所示,直角坐标系位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的方向垂直xOy平面向外,电场线方向平行于y轴。一质量为m.电荷量为q的带正电的小球,从

◎ 题目

如图所示,直角坐标系位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的方向垂直xOy平面向外,电场线方向平行于y轴。一质量为m. 电荷量为q的带正电的小球,从y轴上的A点以水平速度v0向右抛出,与x轴成450角经x轴上M点进入电场和磁场,恰能做匀速圆周运动,从坐标系原点第一次离开电场和磁场。不计空气阻力,重力加速度为g。求:

(1)电场强度E的大小和方向;
(2)磁感应强度的大小;
(3)求小球从A运动到O的总时间。

◎ 答案

(1)(2)(3)

◎ 解析


试题分析:1)小球在电场、磁场中恰能做匀速圆周运动,其所受电场力必须与重力平衡,
有qE=mg        ①  
E=        ②  
重力的方向是竖直向下,电场力的方向则应为竖直向上,由于小球带正电,所以电场强度方向竖直向上. 
(2)小球进入磁场时的速度,根据平抛运动规律可得
设半径为r,由几何关系知
根据牛顿第二定律可得:
根据平抛运动规律可得:
联立可得
(3)从A运动到O点的时间包括平抛运动时间,圆周运动时间
根据平抛运动规律可得:
根据几何知识可得,粒子圆周运动的弧长对应的圆心角为270°,所以有
又亦因为,联立可得
点评:该题考察到了复合场的问题,即在同一区域内同时存在电场、磁场和重力场三者中的任何两个,或三者都存在.此类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握.
常用的处理方法:
1、建立带电粒子在复合场中运动的物理情景.
2、物理情(图)景与解析几何知识有机结合,将物理问题化归为数学问题.
思想方法:数理结合,建模和化归的思想方法.
解题思维流程:题给文字信息→建立物理图景→化归为几何问题→还原为物理结论(构建物理图景(模型)是关键、化归为几何问题是手段).

◎ 知识点

    专家分析,试题“如图所示,直角坐标系位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的方向垂直xOy平面向外,电场线方向平行于y轴。一质量为m.电荷量为q的带正电的小球,从…”主要考查了你对  【带电粒子在复合场中的运动】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐