如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁

首页 > 考试 > 物理 > 高中物理 > 右手定则/2023-04-15 / 加入收藏 / 阅读 [打印]

◎ 题目

如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q.
魔方格

◎ 答案


魔方格

(1)棒产生的感应电动势E1=BLv0
通过R的电流大小I1=
E1
R+r
=
BLv0
R+r

根据右手定则判断得知:电流方向为b→a            
(2)棒产生的感应电动势为E2=BLv
感应电流I2=
E2
R+r
=
BLv
R+r

棒受到的安培力大小F=BIL=
B2L2v
R+r
,方向沿斜面向上,如图所示.
根据牛顿第二定律 有 mgsinθ-F=ma
解得 a=gsinθ-
B2L2v
m(R+r)

(3)导体棒最终静止,有 mgsinθ=kx
弹簧的压缩量x=
mgsinθ
k

设整个过程回路产生的焦耳热为Q0,根据能量守恒定律 有
  
1
2
m
v20
+mgxsinθ=EP+Q0

解得 Q0=
1
2
m
v20
+
(mgsinθ)2
k
-EP

电阻R上产生的焦耳热Q=
R
R+r
Q0=
R
R+r
[
1
2
m
v20
+
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
如图所示,将两个滑动变阻器串联起来,连接在电路中,连接时使用了MN接线柱,若要使两只变阻器的总电阻最大,则滑片应放在[]A.都放在最右端B.都放在最左端C.放在最右端D.放在
如图所示,将两个滑动变阻器
如图所示,边长为2l的正方形虚线框内有垂直于纸面向里的匀强磁场,一个边长为l的正方形导线框所在平面与磁场方向垂直,导线框的一条对角线和虚线框的一条对角线恰好在同一直
如图所示,边长为2l的正方形
在图虚线所围区域内有一个匀强磁场,方向垂直纸面向里,闭合矩形线圈abcd在磁场中做匀速运动,线圈平面始终与磁感线垂直,在图示位置时ab边所受磁场力的方向向上,那么整个线
在图虚线所围区域内有一个匀
如图所示,一带电小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面,当小球自左方摆到最低点时,悬线上的张力恰为零,则小
如图所示,一带电小球质量为
如图所示,某人在自行车道上从南往北沿直线以速度v骑行,该处地磁场的水平分量大小为B1,方向由南向北;竖直分量大小为B2,方向竖直向下,自行车龙头为直把、金属材质,两把
如图所示,某人在自行车道上