如图所示,两平行的足够长光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l,导轨电阻忽略不计,导轨所在平面的倾角为α,匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨

◎ 题目

如图所示,两平行的足够长光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l,导轨电阻忽略不计,导轨所在平面的倾角为α,匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直向下.长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起,总质量为m,置于导轨上.导体棒中通以大小恒为I的电流,方向如图所示(由外接恒流源产生,图中未图出).线框的边长为d(d<l),电阻为R,下边与磁场区域上边界重合.将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直.重力加速度为g.问:
(1)线框从开始运动到完全进入磁场区域的过程中,通过线框的电量为多少?
(2)装置从释放到开始返回的过程中,线框中产生的焦耳热Q是多少?
(3)线框第一次向下运动即将离开磁场下边界时线框上边所受的安培力FA多大?
(4)经过足够长时间后,线框上边与磁场区域下边界的最大距离xm是多少?
魔方格

◎ 答案


魔方格
(1)通过线框的电量为q=I△t=
△φ
△t?R
△t=
△φ
R
=
Bd2
R

(2)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W.由动能定理mgsinα?4d+W-BIld=0
且Q=-W
解得Q=4mgdsinα-BIld
(3)设线框第一次向下运动刚离开磁场下边界时的速度为v1,则接着又向下运动2d,由动能定理mgsinα?2d-BIld=0-
1
2
mv12

v1=

2BIld-4mgdsinα
m

安培力FA=BI′d=B?
Bdv1
R
?d=
B2d2v1
R
=
B2d2
R

2BIld-4mgdsinα
m

(4)经过足够长时间后,线框在磁场下边界与最大距离xm之间往复运动.
由动能定理   mgsinα?xm-BIl(xm-d)=0
解得xm=
BIld
BIl-mgsinα

◎ 解析

“略”

◎ 知识点

    专家分析,试题“如图所示,两平行的足够长光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l,导轨电阻忽略不计,导轨所在平面的倾角为α,匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨…”主要考查了你对  【动能定理】,【法拉第电磁感应定律】,【导体切割磁感线时的感应电动势】  等知识点的理解和应用能力。关于这些知识点的“档案”,你可以点击相应的链接进行查看和学习。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐